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Abstract

Installing various hooks into the victim system is an impattattacking strategy used by malware, including
spyware, rootkits, stealth backdoors, and others. In amewvade detection, malware writers are exploring new
hooking mechanisms. For example, a stealth kernel backdeepdooy has been demonstrated to successfully
evade all existing hook detectors. Unfortunately, theestdtthe art of malware analysis is painstaking, mostly
manual and error-prone. In this paper, we propose the fistegyatic approach to automatically identifying hooks
and extracting the hook implanting mechanisms. We profiosegrained impact analysigs a unified approach
to identify hooking behaviors of malicious code. Since iedmot rely on any prior knowledge of hooking mech-
anisms, it can identify novel hooks. Moreover, we devisemantics-aware impact dependency analysishod
to provide a succinct and intuitive graph representatiaifiustrate the hooking mechanisms. We have developed
a prototype, HookFinder, and conducted extensive expeatsnesing representative malware samples from various
categories. The experimental results demonstrated thakFider correctly identified the hooking behaviors for
all the samples, and provided accurate insights abouttioeking mechanisms.

1 Introduction

The arms race between malware writers and malware defehdsifsecome evident. In order to evade malware
defense techniques, malware writers are always strivirggpdore novel attacking techniques. In response, on
the outbreak of new malware, it is critical for malware defers to have an accurate and responsive under-
standing of the attacking mechanisms in order to win thdebatt

One important malware attacking vector that needs to beratwtal is its hooking mechanism. Malicious
programs implant hooks for many different purposes. Spgwaay implant hooks to get notified of the arrival
of new sensitive data. In particular, keyloggers may ihdtabks to intercept users’ keystrokes, password
thieves may install hooks to get notified of the input of uspesswords, network sniffers may install hooks
to eavesdrop on incoming network traffic, and BHO-based aslwey also install hooks to capture URLs and
other sensitive information from incoming web pages. Iniaid, rootkit may implant hooks to intercept and
tamper with critical system information to conceal its grese in the system. Furthermore, stealth backdoors
may place hooks on the network stack to establish a steadtimyzinication channel with remote attackers.

With prior knowledge of how existing malware implants hoasesveral tools [4,13,20] check known mem-
ory regions for suspicious entries. However, they are cetapl ineffective when malware makes use of new
approaches to install hooks. This concern is not hypothletiRecently, a stealthy kernel backdodeep-
door [21], was developed using a novel method to hook the netwiardks and has been demonstrated to be
able to successfully evade all the existing detection nustho

In response to rapidly innovated malware techniques, thien@adware society needs an effective mecha-
nism to discover new hooks and understand their hooking argsims in a timely manner. Unfortunately, the
existing malware analysis procedure is painstaking, mestinual and error-prone. Various code obfuscation
techniques employed by malware writers make this procemss eore difficult. In this paper, we propose the
first systematic approach to this research problem. Inquaati, given an unknown malicious binary, we aim
to identify if this code installs any hooks into the systemgl & so, provide detailed information about how it



installs the hooks.

The intuition of our approach is that a hook implanted by ttadicious code is one of the impacts (in terms
of memory and registers) that the malicious code has madeetavhole system, and this impact eventually
affects the execution flow of the system to jump into the nialis code. In order to capture this distinct
behavior, we propose a novel approach, fine-grained impedysis. It works by identifying all the impacts
made by the malicious code, and keeping track of the impamisrty across the whole system. If the control
flow is affected by one of these impacts to jump into the malisicode, then we determine that this transition
is caused by a hook, which is installed by the malicious cdaeunderstand how this hook is implanted, we
perform dependency analysis on the history of impact prafiag, leveraged with OS-level semantics.

To explore the feasibility of our approach, we have designatideveloped a prototype, called HookFinder.
Our experiments have demonstrated that for each malwanglsamour test set, HookFinder is able to identify
the hooks created by the sample and give valuable insiglust abeir hooking mechanisms within minutes.
We also believe that HookFinder can be automated to categthré large volume of malware samples that anti-
virus companies receive everyday with respect to their mgpkehaviors, and instantly realize and respond to
novel hooking mechanisms.

In summary, this paper makes the following contributions:

e We propose fine-grained impact analysis as a unified apptoddintify the hooking behavior of malicious
code. Since it does not rely on any prior knowledge of hookirechanisms, our approach is well fitted in
identifying novel hooking mechanisms.

e In order to provide valuable insights about how malware anf8 hooks, we devise a semantics-aware im-
pact dependency analysis method, which provides a sucanttintuitive graphical representation to help
malware analysts understand the hooking mechanism entplyythis malware.

¢ We have designed and developed HookFinder to demonsteafedhibility of our approach. We have con-
ducted extensive experiments with representative malwsaneples from various categories, and demon-
strated that HookFinder could correctly identify their king behaviors, and provide accurate insights about
their hooking mechanisms.

The paper is structured as follows. The next section gives/arview of our approach. Secti@udescribes
details on the design and implementation of HookFinderti@ed presents the experimental results. Seclon
discusses some related issues. Sedisuarveys related work and Secti@rtoncludes the paper.

2 Problem Statement and Our Approach

In this section, we formally define the problem of hooking d&eébr detection and analysis, and give a brief
overview of our approach.

2.1 Problem Statement

Given a malware sample, we aim to determine whether it costaboking behaviors. If so, we want to reveal
details about its hooking mechanism. A hooking behaviorlmformalized as follows. A malicious program
C contains a local functioft’, and attempts to implant a hodk into a memory locatiorL, of the system. When

a certain event happens, the system will load the hiigland then the execution is redirectedRo We refer

to the address of" ashook entry and L. ashook site Figurel(a) shows a piece of pseudo code that hooks an
entry in the System Service Descriptor Table (SSDT) of Wimsleystem. This hooking mechanism is used in
many kernel-mode malware samples, such as the Sony Ra2#kitIh this exampleNewZwOpenKey is the
hook entryF', the hook sitel is the actual entry foZwOpenKey in the service descriptor table, and the hook
H is the address dflewZwOpenKey in that entry, as illustrated in Figudgb).

Data Hook vs. Code Hook A hook H can be either data or code. Af is interpreted as data by the system, and
is used as the destination address of some control tramsfengtion to jump into the hook entdy, we term it
adata hook For example, the hook in Figufeis a data hook, because it is the address of the hook entry, and
is interpreted as the jump targdi. can also be interpreted as code. In this case, we catlatle hook A code

hook contains a jump-like instruction (suchjasp andcal | ), and is injected to overwrite some system code



#def i ne SYSTEMBERVI CE(_function) \ C: Malicious Program
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Figure 1:An SSDT Hooking Example This code attempts to hoadwOpenKey, by writing the address of its
own functionNewZwOpenKey into the corresponding entry of the SSB&Ser vi ceDesci r pt or Tabl e.

(such as kernel modules and common DLLs). When the oveenrdystem code is executed, the execution
will be redirected into the malicious code. We need to idgridth cases, and we should be able to tell what
kind of hook it is, when we identify one. As we will see latdretpolicies used to detect hooking behaviors are
different between these two categories due to their diffienature.

Direct Modification vs. Function Call Malware has two choices to install into L. First, it may directly
write H into L using its own code. Second, it may call a function to achiéveniits behalf. Windows
system provides several APIs for applications to registeious event handlers (i.e., hooks). For example,
Set W ndowsHook Ex allows an application to register a hook for certain Windawent, such as keystroke
events. Whenever a keystroke is entered into the systermgdivimwill call the hook function provided by this
application. In addition, functions likeencpy andW i t ePr ocessMenor y can overwrite a memory region
on behalf of their callers. Thus, once we identify a hook, wedto determine which method the malware used
to register the hook.

If the malware directly modified. to install H, we need to understand whefeis, and how the mal-
ware sample obtaing. Sincel is usually not located in a fixed place, malware has to findatmfrsome
static point. This static point can be a global system symdiothe result of a function call. After obtain-
ing this static point, malware may walk through the datacttmes referenced by it to eventually locdte
The example in Figurd makes use of this method, and the hook €ites calculated from a global symbol
KeSer vi ceDescri pt or Tabl e. Therefore, if the malware directly overwritds we need to answer the
following questions:

e Where is the static point?
e How does the malware obtain the static point?
e How does it infer the final locatiof from the static point?

If the malware invokes an external function to registerwe need to identify the function’s address and
name. In addition, we need to know the actual arguments teaised to call this function. The function call
and its argument list can give semantic information about the hook and what kind of hook is registered. For
example, if we identify that a malicious program cahst W ndowsHook Ex to register a hook, we are able
to tell from the first argument what type of hook is register&tierefore, if the malware invokes an external
function to registelr’, we need to answer the following questions:

e What is the external function, including its entry addresd s name?
e What arguments does the malware use to invoke this function?

2.2 Our Approach

Since most of malware programs include various code obfiascéechniques to foil static analysis, our ap-
proach is based on dynamic analysis. That is, we actuallyrmalware in a special environment, and observe



how it implants the hook, and how the hook is activated by {erating system. Our approach is divided into
two steps: hook detection and hooking mechanism analysis.

Hook detection: fine-grained impact analysisOur approach is based on the following intuition. Malicious
code makes changes, including memory and the other madhteschanges, to the execution environment as it
runs. We call these changesiampacts Obviously, a hookd is one of the impacts made by the malicious code,
and this impact finally redirects CPU’s control flow into thalinious code. Hence, if we are able to identify
all the impacts of the malicious code, and observe one ofrtipacts being used to cause the execution to be
redirected into the malicious code, we can determine a hasthlied by the malicious code. Furthermore, we
are also interested in how an impact is formulated sincallyit for the purpose of understanding the hooking
mechanism. Therefore, we identify titial impacts the newly introduced impacts by the malicious code,
keep track of the impacts propagating over the system.

Based on this intuition, we propo$i@e-grained impact analysisVe mark all the initial impact made by
the malicious code at the byte level. The initial impactdude the data written directly by the malicious code,
and the data written by the external code on its behalf. Thekeep track of the marked impacts propagating
through the whole system. During the execution, if we oleséinat the instruction pointer (i.eEl P in x86
CPUs) is loaded with a marked impact, and the execution jumpsediately into the malicious code, then
we identify a hook. Furthermore, we have determined thafuimg target is the hook entr¥’, the memory
location that the instruction pointer is loaded from is tleksite L, and the content withid is the hookH .

Hooking mechanism analysis: semantics-aware impact depdancy analysis Once identifying a hool7,
we want to understand the hooking mechanism. During the ¢mp@pagation, we record into a trace the
details about how the impacts are propagated in the systdmrefore, from the trace entry corresponding
to the detected hookl, we can perform backward dependency analysis on the trale.résult gives how
the hookH is formulated and installed into the hook site However, such a result is difficult to understand,
because it only provides hardware-level information amdetimes can be big. We combine OS-level semantics
information with the result, and perform several optimizas to hide unnecessary details. The final output is a
succinct and intuitive graphical representation, whicstiaightforward for malware analysts to understand its
hooking mechanism.

Note that our approach would catch “normal” hooking behavioNindows provides a number of APIs,
such a<Cr eat eThr ead andCr eat eW ndow, for applications to register their callback functions.ndbws
will invoke these callbacks on certain events. These nohoaking mechanisms can be compiled into a white-
list. Then when normal looks will be captured by our detactapproach, we can classify them as normal
hooks, by extracting their hooking mechanisms and comgawith the white-list.

3 System Design and Implementation

To demonstrate the feasibility of our approach, we desighimplement a system, HookFinder, to identify the
hooking behavior and understand the hooking mechanisnhidrséction, we give an overview of HookFinder
and describe its components.

3.1 System Overview

The overview of HookFinder in illustrated in FiguBe HookFinder is based onwhole-system emulatoit
emulates an x86 computer and runs a Windows guest systempaof i The malware to be analyzed is
executed in the Windows guest. There are two reasons why \wkogm whole-system emulator. First, it facil-
itates instrumenting CPU instructions in a fine-grained mea&nIn particular, we are able to instrument every
CPU instruction executed in the Windows guest system. Skc¢oprovides an excellent isolation between the
analysis environment and the malware. Therefore, it issexéty difficult for malicious code to interfere with
our detection and analysis procedure and affect the asalgsults. In the implementation, we use QEMU [2]
as our emulator, due to its efficiency and its open source.code

Within the emulator, we build three componenisipact analysis enginesemantics extractorandhook
detector The impact analysis engine is a central component, whicloimes fine-grained impact analysis. It
marks the impacts made by the malware, and keeps track ofcismpeopagating over the whole system. A
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Figure 2: System Overview

whole-system emulator only provides a hardware-level \oétihe system, such as the states of CPU registers,
physical memory, and I/O devices. However, malware aralygsed to understand the malware and system
behaviors at the operating-system level. The semanticaaat implements the functionality of extracting
OS-level semantics information from the emulated envireninFor example, it provides process and module
information of the current instruction executed. It carogdsovides information of external function calls. The
hook detector behaves like a controller, cooperating vighitnpact analysis engine and the semantics extractor
to identify hooks.

To analyze hooking mechanisms, the impact propagationt&vas well as necessary OS-level semantics
information, are recorded into a trace, called itmpact trace The hook analyzemnalyzes the impact trace
and generates a succinct and intuitive graphical reprasenthook graph The hook graph conveys essential
information for malware analysts to easily understand theking mechanism.

3.2 Impact Analysis Engine

The impact analysis engine performs fine-grained impadysisa and is composed of two sub-components:
impact markerandimpact tracker The impact marker is responsible for marking the initiapants made by
the malicious code, and the impact tracker keeps track dfitpacts propagation.

Impact Marker In the impact marker, we aim to identify all the initial imgac¢hat can be used to install the
hooks. This is important, because if we fail to mark someahiinpacts, malware writers may exploit this fact
to evade our detection.

First, we consider the case that an instruction from malicode directly make an impact. In this case,
we mark the destination operand, either memory location ©PHl register, if it is not marked already. Note
that the impact marker needs the information from the seicsmaktractor to determine whether an instruction
is from the malicious code.

In addition, we consider the case that malicious code mayenaakinitial impact by calling an external
function. For example, it may caReadFi | e to obtain the address of the hook enfryfrom a configuration
file, and then install it as the hodi into the hook sitel, by callingnmenct py, without H being marked. There-
fore, we need to mark the output of that external function tdgain, the semantics extractor can determine
when an instruction is executed under the context of an maitéunction call.

To identify the outputs of an external function, we devetbpeo different methods, for the registers and
memory, respectively. For register outputs, we take a s the entry of external function call, and when
the external function returns, we compare the registeestaith the snapshot, and mark the registers with
different values, with the exception &SP, EBP andEl P. For memory outputs, we mark a memory location
if it is written under the context of the external functiorllcand it is not a local variable on the stack. To
determine a local variable, we obtain the stack range focthmeent thread from the semantics extractor, and
compare the memory location with the valueE8P on the entry of the external function call: if the memory
location is smaller than the value BSP and within the stack range, then it is a local variable.



Furthermore, malware may dynamically generate new code séli-generated code is also part of impacts
made by the malicious code, and therefore must be markeds, Waican determine if an instruction is gener-
ated from the original malicious code by simply checkinchi# memory region occupied by that instruction is
marked. If so, we also treat that code region as malicious,caad mark the inputs taken by the self-generated
code too.

Impact Tracker The impact tracker keeps track of the impacts propagatireg the system. It tracks all
the data dependencies between source and destinatiomdpera@hat is, if any byte of any source operand
is marked, the destination operand is also marked. In addlifor a memory source operand, if its address
becomes marked, we also mark the destination operand. dliiy pnables us to track how the malicious code
walks walk through a data structure, starting from a markadtpr to the data structure. These two policies
are similar to those in the dynamic taint analysis systems(,711, 18, 28].

What makes impact tracker really different is the way it &seicnmediate operands. That is, if an instruc-
tion has an immediate operand, the impact tracker checke ifrtemory region occupied by this immediate
is marked and propagates impact accordingly. In contriastdynamic taint analysis systems treat immediate
operands as clean. In our scenario, instructions inclugiimgediate operands may be generated by the ma-
licious code, and therefore need to be checked. For exammpllee code hook case, the malicious code may
inject into the system code a jump instruction with a hardetbtarget address, to redirect the execution to the
malicious code. This immediate operand is deliberatelycigd by the malicious code to set up a hook.

To enable dependency analysis, the impact tracker perfamextra operation during the impact propaga-
tion. That is, we assign a unique identifier to each marked bythe destination operand. We refer to this
identifier asdependency IDThen for each instruction that creates or propagates thkethalata, we write
a record into the impact trace. The record contains theioaktiips between the dependency IDs of marked
source and the destination operand, associated with ohaitedl information about that instruction.

3.3 Semantics Extractor

The semantics extractor bridges the semantic gap betwedratware-level view and the software-level view.
Specifically, the purposes of the semantics extractor aeetfold: (1) determine the process, thread, and
module information of the current executed instruction;d@ermine if an instruction is executed in the context
of an external function call, and if so, resolve its functitame and arguments; and (3) determine the symbol
name if a memory read is to a symbol.

Process, Thread, and Module Information Several previous systems [10, 14, 28] have discussed 8rtyac
OS-level semantics from a virtual machine monitor or a wisylstem emulator. Theoretically, the emulator
is able to extract information about process, thread anduhepdy examining the emulated system states.
However, for the simplicity of implementation, we employettechnique proposed in [28]. That is, we have
developed a kernel module and inserted into the emulateichiopg system to collect the process, thread, and
module information.

External Function Call Previous systems [10, 28] have also discussed how to deterexiernal functions
called by the malicious code, by comparing the stack pant&€he intuition is that the malicious code has to
push the arguments and the return address onto the stack &m @xternal function. Thus by comparing the
stack pointer when the execution enters the malicious cawlé,the one when the execution leaves, we can
determine if the execution jumping out of the malicious czdeecause of an external function call. We realize
this idea in our implementation of HookFinder.

Then given the entry address of an external function, we wan¢solve its function name. We achieve
this by parsing the PE header of a module whenever it is loadedhe system. Each binary in the PE format
contains a table (Export Table) that for each of its expofteattions maps its name with its offset within the
binary. Combining the offset with the base address that thduhe is actually loaded in, we can infer the actual
address of an external function.

Symbol Name When an instruction reads a memory location, we want to deter if it is reading a symbol,
and if so, resolve the symbol name. This is useful in germagatn OS-level hook graph. Similarly to resolving



f8ablee6: mov Oxf8ab20a0,%edi 8ab1f59: mov 0xf8ab20b4,%ecx aries.sys+ee6: mov ZwOpenKey,%edi aries.sys+f59: mov KeServiceDescriptorTable,%ecx
M[0xf8ab20a0]=0x804dd6e3 M[0xf8ab20b4]=0x80559b80 [aries.sys+10a0]=0x804dd6e3 Mlaries.sys+10b4]=0x80559b80

l i | /

f8ab1f56: mov 0x1(%edi),%eax ‘ ’fsablfsf: mov (%ecx),%ecx ‘

aries.sys+f56: mov 0x1(%edi),%eax ‘

impacted address

aries.sys+f61: movl aries.sys+66e,(%ecx,%eax,‘d)

aries.sys+f5f: mov (%ecx),%ecx

Impacted Address

f8ab1f61: movl $0xf8ab166e,(%ecx,%eax,4)
M[0x804e2efc]=0xf8ab166e

l

’ 804df051: mov (%edi,%eax,4),%ebx

804df069: call *%ebx

(a) Hardware-level hook graph (b) OS-level hook graph

M[ntoskrnl.exe+e2efc]=0xf8ab166e

ntoskrnl.exe+8051: mov (%edi,%eax,4),%ebx

}

ntoskrnl.exe+8069: call *%ebx

Figure 3: Hardware-level and OS-level hook graphs for a hnd@ony Rootkit.

external function name, we parse the PE header of a moduleavéeit is loaded into the system. We extract
symbol names with their offsets in both Export Table and Irhjpable, and infer the actual address of a symbol
using the module base address and its offset.

3.4 Hook Detector

The hook detector works by checking if the control flow is effiéel by some marked value, which redirects the
execution into the malicious code. More precisely, we olEs@rhether the instruction pointé&t P is marked,
and the execution jumps immediately from the system codaetirg malicious code region, or the code region
generated from the malicious code. If the conditions arsfgad, we identify a hook: the jump target is the
hook entryF', the memory location that EIP is loaded fromlisand the content i is H.

The above policy functions properly for identifying dataoke, but is problematic for code hooks. This is
because a code hook is a piece of code generated by the msal@mde, and thus is treated as malicious code
by the above policy. Therefore when the code hook redirdwtsekecution to the malicious code, the above
policy will not raise an alarm because it sees the executamgtransferring from malicious code to malicious
code. To solve this problem, we extend the above policy, sehthe execution transitions from a code hook
region into malicious code will raise an alert.

Then the question is how to distinguish code hook regioni thi¢ other self-generated code regions. Self-
generated code usually remains in the module space of theiooual code, or stays on a region that is not
occupied by any module (such as in heap), whereas a code égiokiis a piece of code that overwrites a code
region in a different module. Therefore, during executibthe currently executed basic block is marked and
from a different module, and EIP is marked and jumps into tladigious code, we identify a code hook.

3.5 Hook Analyzer

Once a suspicious hook is identified, the hook analyzer sstal@xtract essential information about its hooking
mechanism by performin§emantics-aware dependency analgsishe impact trace. The procedure consists of
the following three steps: (1) from the hoék, perform backward dependency analysis on the impact taack,
generate hardware-level hook graph; (2) with the OS-lemlantics information, transform the hardware-level
hook graph into an OS-level hook graph; and (3) if necessamplify the hook graph by hiding unnecessary
details and merging the similar nodes. We detail these sésgpectively.

Hardware-level Hook Graph Remember that each record in the impact trace has the depsnidérmation.
Once identify a hookH, we obtain its dependency IDD;,. Since the impact trace records the relationships
between dependency IDs, we first search forward the impaoe tior the record that definé®);,. From that



record, we obtain the source dependency IDs fliat depends on. Then for each of the source dependency
IDs, we search backward for the record that defines it. Iftlaee any source dependency IDs in that record, we
also perform the backward search for those IDs. We perforsrbtickward search recursively until all records
have been located. Then we connect these records accoadthgit dependency relationships. Besides the
dependency information, each record contains detailedrimdtion about an instruction, such as its address and
the values of its operands. If the instruction is executedeuthe context of an external function, the record
also contains the entry address of that external functiod,tle value 0ESP on the entry of call. We put this
detailed information into the node corresponding to themcThe resultant graph is the hardware-level hook
graph. Figured(a) shows a real hardware-level hook graph for a hook in Sauothk [22], which employs the
same hooking mechanism as the sample shown in Figukeectangle node denotes an instruction propagating
malware’s impacts. A diamond node denotes that its succesiestination address affected by the malware.
Note that to save the space, we only display really impoitdotmation for each node, such as the instruction
address and the dissembled instruction. For each memonarmhewe show its address and value. If the
instruction is executed under the context of an externaltfan call, we can also show the entry of the function
call and the ESP value on the entry.

OS-level Hook Graph With the OS-level semantics information provided by the aetics extractor, we can
transform a hardware-level hook graph into an OS-level tgralph. Given the address of the instruction, we
can show which module it belongs to and its offset to the modthalse. Similarly for memory access, we can
determine if it falls into any module space. If the memoryesscis to a symbol, we can even resolve the symbol
name. Given the entry address of an external function, waeswive its function name. Then, the resultant
graph is an OS-level hook graph. Figuéb) illustrates the OS-level hook graph that is transforrfred
Figure3(a). We can see that FiguB¢b) correctly reflects the hook registration procedure showFigurel.
That is, symbolZwOpenKey andKeSer vi ceDescri pt or Tabl e are used to calculate the hook site
(shown in the diamond-shaped node), and an address (psie86&) is written intd.. This is H, the address

of the hook entryF'.

In addition to resolving function name, HookFinder can dtentify the function arguments from the
impact trace. Because pushing arguments is a type of imphose operations is recorded in the trace. For
each function activation in the trace, HookFinder locatesfirst record of the activation, denotediasThe
records precede recoi@ontains function arguments. Normally, function argureespushed in reverse order,
i.e., the first argument is pushed onto the stack last.

Graph Simplification Sometimes, the resultant hook graph can be very complexbéiter readability and
clarity, we simplify it using the following criteria. (1) ithe adjacent two nodes belong to the same external
function call, merge them together. (2) if the adjacent twdeas are move-like instructions, such as mov, push,
and pop, merge them together, and if those instructionsagtp the same value without modification, we
merge those move-like instruction into a single node. Wdyathiese two policies repeatedly until no nodes
can be merged.

4 Evaluation

In this section, we present details on the experimentaltseestiHookFinder, by evaluating it with real-world
malware samples. We first give a summary of the experimeatallts over these samples, and then present
details on three of them. In all our experiments, we run Hao#er on a Linux machine with a dual-core
3.2 GHz Pentium CPU and 2GB RAM. On top of HookFinder, we ith$téndows XP Professional SP2 with
512M of allocated RAM as the guest operating system.

4.1 Overview

Our sample set consists of eight malware samples, whichtaained from public resources (such as [17, 19])
and collaborative researchers. In Tableve characterize these samples according to whether tegyaaked,
whether they are kernel or user threats, and which categtivey belong to. Since deepdoor is not released by
its author, we use a similar kernel backddday Backdooy which resembles deepdoor’s hooking mechanism.
We include Uay backdoor to verify the capability of HookFéndn identifying novel hooks.
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Sample ‘ Size‘ Packed?‘ Kernel/User | Category

Troj/Keylogg-LF 64K Y User Keylogger
Troj/Thief 334K N User Password Thief
AFXRootkit [1] 24K Y User Rootkit

CFSD [6] 28K N Kernel Rootkit

Sony Rootkit [22] 5.6K N Kernel Rootkit
Vanquish [25] 110K N User Rootkit

Hacker Defender [12] 110K N User&Kernel | Rootkit

Uay Backdoor [24] 212K N Kernel Backdoor

Table 1: Malware Samples in Our Experiment

In the experiment, HookFinder has successfully identifiedks for all the samples. We summarize the
results in Table2. In the second column of Tabl we list the elapsed time for each sample. It breaks down
into two parts: the runtime for running the sample in the extad environment (shown as the first number),
and the runtime for generating hook graphs (as the secondherimAfter executing a sample, we wait for
2-3 minutes to make sure it has fully started. In order tagiigpotential hook behavior, we then perform a
series of simple interactions with the emulated systentudticg listing a directory, and pinging a remote host,
which may cost another 2 or 3 minutes. The runtime for gemgydtook graphs varies from 2 seconds to 33
minutes, depending on the trace size, the number of hookisptiier factors. In total, HookFinder spends up
to 39 minutes on a sample during the evaluation, which isiefficompared to manual malware analysis that
can last hours or days.

The third column lists the size of the impact trace for each@a. As we can see, the maximum size in the
table is 14G, which is acceptable for a complex program dkegmillions of instructions.

The fourth and fifth column shows the number of suspiciouskb@md the total number of identified hooks,
for each sample. We found some normal hooks registered bipllioeving functions: EVENT.SINK AddRef
FltDoCompleteProcessingWhenSa#artServiceDispatcherLreate ThreadCreateRemote ThreadndPsCre-
ateSystemThreadNote that our approach does not distinguish the intent afaking behavior. Thus, we will
identify all hooks in the first place; then we may maintain atedtist for normal hooking mechanisms.

The last column gives essential information about the hwpknechanism. We found that three sam-
ples installed code hooks. All three samples derive the tetds by callingGetProcAddress Vanquish
directly writes the hooks into the hook sites, whereas AF&tRib and Hacker Defender calWriteProcess-
Memoryand NtWriteVirtualMemoryrespectively to achieve it. The other six samples instaflath hooks,
four of which call external functions to install the hooksn particular, CFSD call$-ltRegisterFilte; and
Trojan/Keylogg-LF and Troj/Thief calBetWindowsHookExWe also extracted arguments for these function
calls, and we found that Trojan/Keylogg-LF installed a \MEYBOARD_LL hook, and Trojan/Thief installed
a WH.CALLWINDPROC hook. The remaining two samples directly writooks into hook sites. The static
points areKeServiceDescriptorTabland NdisRegisterProtocalor Sony Rootkit and Uay Backdoor, respec-
tively.

4.2 Detailed Analysis

Here we present detailed results for two malware sampley: Bdakdoor and Vanquish. The hook graph of
each sample is shown in Figude

Uay backdoor HookFinder identified five data hooks in total for this samphe reviewed the generated hook
graphs, and we found that three of them were installeBdgreateSystemThreathis kernel function creates

a system thread with the thread entry provided by the callbus, these three hooks are normal hooks. The
other two are suspicious, and their hook graphs are simi&rshow one graph in Figuda). We also show
the corresponding unsimplified hardware-level graph iuFé& in the Appendix.



Sample Runtime | Trace Hooks Hooking Mechanism

Total | Malicious
Troj/Keylogg-LF 6m+9m | 3.7G 2 1 Data, CallSetWindowsHookEx(WKEYBOARDLL,...)
Troj/Thief 4Am+3s | 143M 1 1 Data, CallSetWindowsHookEx(WBALLWINDPROC,...)
AFXRootkit 6m+33m 14G 4 3 Code, CallWriteProcessMemory
CFsSD dm+2m | 2.8G 5 4 Data, CallFltRegisterFilter
Sony Rootkit 4m+2s| 25M 4 4 Data, Direct, Static PoireServiceDescriptorTable
Vanquish 6m+12m| 4.4G | 11 11 Code, Direct, Static PoirGetProcAddress
Hacker Defender| 5m+27m | 7.4G 4 1 Code, CallNtWriteVirtualMemory
Uay backdoor 4m+25s| 117M 5 2 Data, Direct, Static PoirttdisRegisterProtocol

Table 2: Summarized experimental results

As we can see in Figu4(a), there are two branches in the bottom. The left brancbrites how the hook
site L. was inferred, and the right branch presents how the Héokas formulated. From the top of the right
branch, we can see that originated from the output of a function calldisAllocateMemoryWithTagThis
kernel function is used to allocate a memory region in theéeespace. According to the function’s semantics,
this output has to be the address of the allocated memommreghis address is finally implanted into the hook
site L.

From the top of the left branch, we observe that derived from the output of a function calidisRegis-
terProtocol This kernel function registers a network protocol. Acéogdto the function semantics, we believe
this output is the protocol handle in the second arguments fmandler points to an internal data structure
maintained by the Windows kernel. Then we can see the irgiru¢at uay.sys+1695) read a field with the
offset 0x10 in this data structure. The obtained valuyg (s then used as a pointer to read another valye (
from the offset 0x10 in the data structure pointeduyin the subsequent instruction (at uay.sys+16a0). Then,
the instruction (at uay.sys+1589) addgswith 0x40, and the resulted value is eventually used as th& hite
L. We believe that this sample actually walks into this in&mhata structure that it obtains froNdisRegis-
terProtocol and locates the designated hook ditelInterestingly, the definition of the data structure for the
protocol handle created froMdisRegisterProtocak not released in any documentation from Microsoft, but
this malware sample seems to be able to understand this tdattuse, and knows how to locate the desired
hook site from it.

The hook graph for another suspicious hook is very similahi® one, except that it adds with 0x10.
With the knowledge of how this internal structure is defined,would be able to tell which two functions this
malware sample actually hooked.

Vanquish HookFinder identified 11 code hooks in total for Vanquish. teAfreviewing the hook graphs,
we found that Vanquish hooked four uniqgue APRegCloseKeylLoadLibraryExW RegEnumKeyVednd Re-
gEnumKeyEXWThus, multiple hooks may correspond to one APl hookingabee Vanquish installs one hook
per process for that API.

We show a hook graph for hookirigegCloseKein Figure4(b). The other hook graphs are similar. First,
we can see the bottom node. This is the actual instructiogMah injected into the system code to set up the
hook. Itis aj np instruction, and its address is the entry poinR&gCloseKeyThe rest of the graph shows
how the jump target of this instruction is formulated. Here address of this jump target (i.e., Ox77dd6bfl)
is the hook sitel,, and the content il is H (i.e., 0x89d0e032). Again, the left branch represents homas
inferred, and the right branch indicates héiwvas formulated.

The left branch starts with the output of function c@letProcAddress This function returns the actual
function address, given an function name. Therefore, thecsoof the left branch is the address of a function
call, and the actual value is 0x77dd6bf0, which is the addfesRegCloseKeyAs we follow the links down,
we can see this address is added by 1 and usdd &bviously, the offset 1 is for the opcode jofrp. Now
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NDIS.sys+827f: mov 0xc(%ebp),%eax
Call: NdisRegisterProtocol

Impacted Address
kernel32.dII+119ab4: mov %eax,(%esi)

NDIS.sys+828c: mov %ebx,(%eax) Call: GetProcAddress
Call: NdisRegisterProtocol [0x61f81c]=0x77dd6bf0
[0xf56f2d68]=0x81dd0f28

kernel32.dll+ac81: mov Oxc(%ebp),%eax

NDIS.sys+829a: mov %ecx,0x10(%ebx)

vanquish.dll+2834: push $0x1ae4c22 ‘

Call: GetProcAddress [0x61f824]=0x1ae4c22

Call: NdisRegisterProtocal ‘ uay.sys+168d: mov Oxfffffffc(%ebp),%eax

Simple Propagation

[ vanquish.di+216d: mov Oxc(%ebp) %edx |

[0x81dd0f38]=0x81e95ca8 /

‘ uay.sys+1695: mov 0x10(%eax),%esi ‘

|

‘ uay.sys+16a0: mov 0x10(%esi) %esi ‘ [ vanquish.dii+1ea7: add $0x1,%eax | | vanquish.dil+2173: sub $0x5 %edx |
Simple Propagation Simple Propagation

‘ uay.sys+1589: lea 0x40(%esi),%eax ‘ Impacted Address
Simple Propagation

Impacted Address

uay.sys+fcd: mov %eax,(%esi)
[0x81ed3548]=0x81e563a8

‘ vanquish.dll+2170: sub 0x8(%ebp),%edx ‘

vanquish.dll+2176: mov %edx,0xfffffff8(%ebp)
[0x61f810]=0x89d0e02d

‘ vanquish.dll+217f: mov Oxfffffff8(%ebp),%ecx ‘

NDIS.sys+115b: mov %eax,(%ecx)
Call:NdisAllocateMemoryWithTag
[0xf56f2cc4]=0x81e563a8

Simple Propagatiop

‘ vanquish.dll+2182: and $0xff,%ecx ‘

vanquish.dIl+218b: mov %cl,0x1(%edx)
[Ox1ae928d]=0x2d

‘ vanquish.dll+1ea0: mov (%ecx),%dl ‘

vanquish.dll+1ea2: mov %dl,(%eax)
[0x77dd6bf1]=0x2d

‘NDIS.sys+22faa: call *0x40(%eax) ‘ | advapia2.dli+6bf0: jmp 0x89d0e032 |

(a) Hook graph of Uay backdoor (b) Hook graph of Vanquish

Figure 4: Analysis results. A rectangle node denotes aruictsbn. A diamond node denotes that its successor’s
destination address is derived from this node. An ellipsieriabeled “simple propagation” denotes a sequence
of data moves.

for the right branch, we can see that it originates from an édlilmte (Ox1ae4c22) pushed onto the stack. This
value is first subtracted by the addressRagCloseKeyand then subtracted by 5. Then the value is “and” with
Oxff to get the lowest byte, and this byte is written to the lhsite L directly. Obviously, these steps are used

to calculate the relative address for fhap instruction.

5 Discussion

In this section, we discuss the resilience of our system tiows evasion techniques that malware writers may
exploit.
Exploiting Control Dependency The essential of our approach is to identify all the impactlenby the
malicious code, and keep track of the impact propagationlaia dependency. It is natural for malware writers
to think of exploiting control dependency, to evade our digba. For example, the malicious code may embed
a complex switch statement like below to cut the data dep@ydeetweeru andb.

switch(a)

{ case 1: b=1; break; case 2: b=2; break; ... }

This evasion is not viable. This is because that in the impaaker, we thoroughly mark all the initial
impacts (i.e., memory and register writes) made by the noaliccode. Thus, the outpatwill be marked
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anyway.
Not Exhibiting Hooking Behaviors When Tested Malware may not exhibiting hooking behavior during the
dynamic analysis. It may stay inactive until certain coiodit are satisfied. Malware may also detect the
presence of the emulated environment and stay dormant.ofetbases, HookFinder cannot detect hooking
behavior. This is a common shortcoming of dynamic analySisme complementary work has been done to
address this problem. Vasudevan et al. proposed seveadthgtéechniques, such that malware cannot easily
detect the analysis environment [26]. Moser et al. [15] anchiBey et al. [3] also used QEMU to build malware
analysis systems, which are able to uncover hidden belsavionalware by exploring multiple execution paths.
We will leave incorporating these techniques into HookEinals future work.

6 Related Work

Hook detection. Researchers have developed several tools, such as VICEygiem Virginity Verifier [20],
and IceSword [13], to detect the existence of hooks in theesysWith prior knowledge how malicious code
usually set hooks, these tools examine known memory redirsuspicious entries. The common examined
places are system service descriptor table (i.e., SSDT9reg by the OS kernel, interrupt descriptor table
(i.e., IDT) that stores interrupt handlers, import addieddes (i.e., IAT) and export address tables (i.e., EAT)
of important system modules. Assuming that important systeodules do not modify their code (with a few
exceptions), System Virginity Verifier checks if code sewt of important system DLLs and drivers remain the
same in memory as those in the corresponding binaries onldislature, these tools fall into misuse detection,
and thus cannot detect hooks in previously unknown memaipme. In comparison, our approach captures
the intrinsic characteristics of hooking behaviors: onéhef malware’s impacts has to be used to redirect the
system execution into the malicious code. Therefore, itidantify unknown hooking behaviors. Moreover, it
also provides insights about the hooking mechanisms.

Dynamic taint analysis. The fine-grained impact analysis resembles the dynamit &amalysis technique,
which is proposed to solve and analyze many other seculdyectproblems. Many systems [8, 9, 16, 18, 23]
detect exploits by tracking the data from untrusted sousteh as the network being misused to alter the
control flow. Other systems [7, 10, 28] make use of this teqpimito analyze how sensitive information is
processed by the system. Chow et al. applies dynamic taalysia to understand the lifetime of sensitive
information (such as password) in operating systems age larograms [7]. Egele et al. utilize this technique
to analyze BHO-based spyware behavior [10]. Yin et al. als&aruse of dynamic taint analysis to detect and
analyze privacy-breaching malware [28]. Moreover, dyramaint analysis is used for other applications, such
as automatically extracting protocol message formatsafid, preventing cross-site scripting attacks [27].

7 Conclusion

In this paper, we presented a novel dynamic analysis appr@iae-grained impact analysiso identify mal-
ware hooking behaviors. This approach characterizes malvinpacts on its system environment, and ob-
serves if one of the impacts is used to redirect the systecuére into the malicious code. Since it captures
the intrinsic characteristics of hooking behavior, thishigique is able to identify novel hooks. Moreover, we
devised asemantics-aware impact dependency analgsishod to extract the essential information about the
hooking mechanisms, which is represented as hook graphsleWdoped a prototype, HookFinder, and con-
ducted extensive experiments using representative malsaamples from various categories. The experimental
results demonstrated that HookFinder can correctly ifletitie hooking behaviors for all the samples, and
generated hook graphs provide accurate insights abouttbeking mechanisms.
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Appendix: Hardware-level Hook Graphs

f5bSbf4f: push %eax

[0xf56f2ca0]=0xf56f2cc4

f5b5bf44: push Y%edi
[0xf56f2cac]=0x81ef2218
f5b5bfcf: pop %edi

‘ f5b5c583: mov (%edi), %esi

]

‘ f5b5c589: lea 0x40(%esi),%eax

f5b5c58¢: push %eax

[0xf56f2cc4]=0x81ed3548

183c829a: mov %ecx,0x10(%ebx)
Callee: 0xi83¢c817d ESP: Oxf56f2cdc
[0x81dd0f38]=0x81e95¢ca8

‘ 15b5bf13: mov Oxc(%ebp) Yesi

]

80614471: push %esi
Callee: 0x0 ESP: 0xf56f2ca8
[0xf562c8¢]=0x81ed3548

183¢1158: mov Ox8(%ebp) %ecx
Callee: 0xf83¢1145 ESP: x{56f2c9¢

‘ ‘ 804df993: pop %esi ‘

183¢115b: mov %eax, (%ecx)
Callee: 0xf83¢1145 ESP: 0xf56f2c9c

Callee: 0x0 ESP: 0xf56f2ca8

8054b051: push %esi
Callee: 0xf83¢1145 ESP: 0xf56f2c9c
[0xf56f2c38]=0x81ed3548

83c115h: mov %eax,(%ecx)
Callee: 0xf83c1145 ESP: 0xf56f2c9¢c
[0xf56f2cc4]=0x81e563a8

8054b12f: pop %esi
Callee: 0xf83¢1145 ESP: 0xf56f2c9¢

f5bSbfcs: mov Oxc(%ebp) Yoeax

T~

f5bbicd: mov Y%eax, (%esi)

[0x81ed3548]=0x81e563a8

‘ f5b5bfcd: mov %eax,(%esi) ‘

‘ f83e2faa: call *0x40(%eax) ‘

.

f5b5¢60d: push %eax
[0xf56f2ced]=0xf56f2d68

183¢827f: mov Oxc(%ebp) Y%eax
Callee: 0xf83c817d ESP: 0xf56f2cdc

183c828c: mov Y%ebx,(%eax)
Callee: 0xf83c817d ESP: 0xf56f2cdc

183c828c: mov %ebx,(%eax)
Callee: 0x(83¢817d ESP: 0xf56f2cdc
[0xf56f2d68]=0x81dd0f28

‘ f5b5c68d: mov Oxffffiffc(%ebp) Jbeax

/

‘ f5h5c695: mov 0x10(%eax),%esi ‘

f5b5c511: push %esi
[0xf56f2cd8]=0x81e95ca8

f5bSc5be: pop Yesi

‘ 15b5c6a0: mov 0x10(%esi) %esi ‘
f5b5c511: push %esi f5b5c69a: push %esi
0x81€68d50 o 0x81ef2218

Figure 5: Hardware-level hook graph for Uay backdoor
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f5b5¢513: mov 0x8(%ebp),%edi ‘

]

8056c91a: mov %edi,%edi ‘

]

8056c938: push %edi
Callee: 0x0 ESP: 0xf56f2cd4
[0xf56f2ca8]=0x81ef2218

8056¢987: pop %edi
Callee: 0x0 ESP: 0xf56f2cd4



7c919ab4: mov %eax,(%esi)
Callee: 0x7c80ac28 ESP: 0x61f81
[0x61f81c]=0x77dd6bf0

~

Callee: 0x7c80ac28 ESP: 0x61f814

}

lael2e0: mov %eax,0xfffffffc(%ebp)
[0x61f820]=0x77dd6bf0

)

‘ lael2e3: mov Oxfffffffc(%ebp),%eax ‘

‘ 7c80ac81: mov Oxc(%ebp),%eax ‘

1ae2823: mov %eax,0x1ae92d0
[0x1ae92d0]=0x77dd6bf0

‘ 1ae2839: mov 0x1ae92d0,%edx

‘ 1ae2834: push $0x1lae4c22
[0x61f824]=0x1ae4c22

l

‘ 1lae216d: mov Oxc(%ebp),%edx

1ae283f: push %edx

lae282a: push $0x1ae928c
[0x61f82c]=0x1ae928c

N

‘ lae21db: mov 0x8(%ebp),%edx ‘ *6821702 sub Ox8(%ebp),%edx‘ 1ae2188: mov 0x14(%ebp),%edx ‘ ‘ lae21d7: mov 0x14(%ebp),%ecx ‘

[0x61f820]=0x77dd6bf(

lae21de: push %edx

ae2173: sub $0x5,%edx

‘ 1ae2176: mov %edx, Oxffffff8(%ebp) ‘

lae21da: push %ecx
[0x61f800]=0x1ae928c|

‘ laelead: mov Oxc(%ebp),%ecx ‘

aeleb0: add $0x1,%ecx|

‘ laeleb3: mov %ecx,0xc(%ebp) ‘

[0x61f7fc]=0x77dd6bf0

lae218b: mov %cl,0x1(%edx)

: 0, 0
‘ laelea4: mov 0x8(%ebp),%eax ‘ [0X611810]=0x89d0e02d

N\ \

ﬁaeleaﬂ: add $0x1,%ea>% ‘ lae217f: mov Oxfffffff8(%ebp),%ecx ‘

laeleaa: mov %eax,0x8(%ebp)
‘ [0X6117fc]=0x77dd6bf1 2e2182: and $0xfdbecx

[0x61f800]=0x1ae928d

1ae218b: mov %cl,0x1(%edx)
[0x1ae928d]=0x2d

l

‘ laelea0: mov (%ecx),%dl ‘

‘ laele9a: mov 0x8(%ebp),%eax ‘ ‘ laele9d: mov Oxc(%ebp),%ecx ‘

laelea ov %dl,(Yeax)

laelea2: mov %dl,(%eax)
[0x77dd6bf1]=0x2d

]

‘ 77dd6bf0: jmp 0x89d0e032 ‘

Figure 6: Hardware-level hook graph for Vanquish
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