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Abstract

Installing various hooks into the victim system is an important attacking strategy used by malware, including
spyware, rootkits, stealth backdoors, and others. In orderto evade detection, malware writers are exploring new
hooking mechanisms. For example, a stealth kernel backdoor, deepdoor, has been demonstrated to successfully
evade all existing hook detectors. Unfortunately, the state of the art of malware analysis is painstaking, mostly
manual and error-prone. In this paper, we propose the first systematic approach to automatically identifying hooks
and extracting the hook implanting mechanisms. We proposefine-grained impact analysis, as a unified approach
to identify hooking behaviors of malicious code. Since it does not rely on any prior knowledge of hooking mech-
anisms, it can identify novel hooks. Moreover, we devise asemantics-aware impact dependency analysismethod
to provide a succinct and intuitive graph representation toillustrate the hooking mechanisms. We have developed
a prototype, HookFinder, and conducted extensive experiments using representative malware samples from various
categories. The experimental results demonstrated that HookFinder correctly identified the hooking behaviors for
all the samples, and provided accurate insights about theirhooking mechanisms.

1 Introduction

The arms race between malware writers and malware defendershas become evident. In order to evade malware
defense techniques, malware writers are always striving toexplore novel attacking techniques. In response, on
the outbreak of new malware, it is critical for malware defenders to have an accurate and responsive under-
standing of the attacking mechanisms in order to win the battle.

One important malware attacking vector that needs to be understood is its hooking mechanism. Malicious
programs implant hooks for many different purposes. Spyware may implant hooks to get notified of the arrival
of new sensitive data. In particular, keyloggers may install hooks to intercept users’ keystrokes, password
thieves may install hooks to get notified of the input of users’ passwords, network sniffers may install hooks
to eavesdrop on incoming network traffic, and BHO-based adware may also install hooks to capture URLs and
other sensitive information from incoming web pages. In addition, rootkit may implant hooks to intercept and
tamper with critical system information to conceal its presence in the system. Furthermore, stealth backdoors
may place hooks on the network stack to establish a stealthy communication channel with remote attackers.

With prior knowledge of how existing malware implants hooks, several tools [4,13,20] check known mem-
ory regions for suspicious entries. However, they are completely ineffective when malware makes use of new
approaches to install hooks. This concern is not hypothetical. Recently, a stealthy kernel backdoor,deep-
door [21], was developed using a novel method to hook the network stack, and has been demonstrated to be
able to successfully evade all the existing detection methods.

In response to rapidly innovated malware techniques, the anti-malware society needs an effective mecha-
nism to discover new hooks and understand their hooking mechanisms in a timely manner. Unfortunately, the
existing malware analysis procedure is painstaking, mostly manual and error-prone. Various code obfuscation
techniques employed by malware writers make this process even more difficult. In this paper, we propose the
first systematic approach to this research problem. In particular, given an unknown malicious binary, we aim
to identify if this code installs any hooks into the system, and if so, provide detailed information about how it
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installs the hooks.
The intuition of our approach is that a hook implanted by the malicious code is one of the impacts (in terms

of memory and registers) that the malicious code has made to the whole system, and this impact eventually
affects the execution flow of the system to jump into the malicious code. In order to capture this distinct
behavior, we propose a novel approach, fine-grained impact analysis. It works by identifying all the impacts
made by the malicious code, and keeping track of the impacts flowing across the whole system. If the control
flow is affected by one of these impacts to jump into the malicious code, then we determine that this transition
is caused by a hook, which is installed by the malicious code.To understand how this hook is implanted, we
perform dependency analysis on the history of impact propagation, leveraged with OS-level semantics.

To explore the feasibility of our approach, we have designedand developed a prototype, called HookFinder.
Our experiments have demonstrated that for each malware sample in our test set, HookFinder is able to identify
the hooks created by the sample and give valuable insights about their hooking mechanisms within minutes.
We also believe that HookFinder can be automated to categorize the large volume of malware samples that anti-
virus companies receive everyday with respect to their hooking behaviors, and instantly realize and respond to
novel hooking mechanisms.

In summary, this paper makes the following contributions:
• We propose fine-grained impact analysis as a unified approachto identify the hooking behavior of malicious

code. Since it does not rely on any prior knowledge of hookingmechanisms, our approach is well fitted in
identifying novel hooking mechanisms.

• In order to provide valuable insights about how malware implants hooks, we devise a semantics-aware im-
pact dependency analysis method, which provides a succinctand intuitive graphical representation to help
malware analysts understand the hooking mechanism employed by this malware.

• We have designed and developed HookFinder to demonstrate the feasibility of our approach. We have con-
ducted extensive experiments with representative malwaresamples from various categories, and demon-
strated that HookFinder could correctly identify their hooking behaviors, and provide accurate insights about
their hooking mechanisms.
The paper is structured as follows. The next section gives anoverview of our approach. Section3 describes

details on the design and implementation of HookFinder. Section 4 presents the experimental results. Section5
discusses some related issues. Section6 surveys related work and Section7 concludes the paper.

2 Problem Statement and Our Approach

In this section, we formally define the problem of hooking behavior detection and analysis, and give a brief
overview of our approach.

2.1 Problem Statement

Given a malware sample, we aim to determine whether it contains hooking behaviors. If so, we want to reveal
details about its hooking mechanism. A hooking behavior canbe formalized as follows. A malicious program
C contains a local functionF , and attempts to implant a hookH into a memory locationL of the system. When
a certain event happens, the system will load the hookH, and then the execution is redirected toF . We refer
to the address ofF ashook entry, andL ashook site. Figure1(a) shows a piece of pseudo code that hooks an
entry in the System Service Descriptor Table (SSDT) of Windows system. This hooking mechanism is used in
many kernel-mode malware samples, such as the Sony Rootkit [22]. In this example,NewZwOpenKey is the
hook entryF , the hook siteL is the actual entry forZwOpenKey in the service descriptor table, and the hook
H is the address ofNewZwOpenKey in that entry, as illustrated in Figure1(b).

Data Hook vs. Code HookA hookH can be either data or code. IfH is interpreted as data by the system, and
is used as the destination address of some control transfer instruction to jump into the hook entryF , we term it
a data hook. For example, the hook in Figure1 is a data hook, because it is the address of the hook entry, and
is interpreted as the jump target.H can also be interpreted as code. In this case, we call it acode hook. A code
hook contains a jump-like instruction (such asjmp andcall), and is injected to overwrite some system code
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#define SYSTEMSERVICE(_function) \
KeServiceDescriptorTable.ServiceTableBase \
[*(PULONG)((PUCHAR)_function+1)]

void HookSyscalls() {
...
OldZwOpenKey = SYSTEMSERVICE(ZwOpenKey);
SYSTEMSERVICE(ZwOpenKey) = NewZwOpenKey;
...

}
SSDT

L: Hook Site H: Hook

C: Malicious Program
F: NewZwOpenKey

ZwOpenKey

(a) (b)

Figure 1:An SSDT Hooking Example. This code attempts to hookZwOpenKey, by writing the address of its
own functionNewZwOpenKey into the corresponding entry of the SSDTKeServiceDescirptorTable.

(such as kernel modules and common DLLs). When the overwritten system code is executed, the execution
will be redirected into the malicious code. We need to identify both cases, and we should be able to tell what
kind of hook it is, when we identify one. As we will see later, the policies used to detect hooking behaviors are
different between these two categories due to their different nature.

Direct Modification vs. Function Call Malware has two choices to installH into L. First, it may directly
write H into L using its own code. Second, it may call a function to achieve it on its behalf. Windows
system provides several APIs for applications to register various event handlers (i.e., hooks). For example,
SetWindowsHookEx allows an application to register a hook for certain Windowsevent, such as keystroke
events. Whenever a keystroke is entered into the system, Windows will call the hook function provided by this
application. In addition, functions likememcpy andWriteProcessMemorycan overwrite a memory region
on behalf of their callers. Thus, once we identify a hook, we need to determine which method the malware used
to register the hook.

If the malware directly modifiesL to install H, we need to understand whereL is, and how the mal-
ware sample obtainsL. SinceL is usually not located in a fixed place, malware has to find it from some
static point. This static point can be a global system symbol, or the result of a function call. After obtain-
ing this static point, malware may walk through the data structures referenced by it to eventually locateL.
The example in Figure1 makes use of this method, and the hook siteL is calculated from a global symbol
KeServiceDescriptorTable. Therefore, if the malware directly overwritesL, we need to answer the
following questions:
• Where is the static point?
• How does the malware obtain the static point?
• How does it infer the final locationL from the static point?

If the malware invokes an external function to registerH, we need to identify the function’s address and
name. In addition, we need to know the actual arguments that are used to call this function. The function call
and its argument list can give semantic information about how the hook and what kind of hook is registered. For
example, if we identify that a malicious program callsSetWindowsHookEx to register a hook, we are able
to tell from the first argument what type of hook is registered. Therefore, if the malware invokes an external
function to registerF , we need to answer the following questions:
• What is the external function, including its entry address and its name?
• What arguments does the malware use to invoke this function?

2.2 Our Approach

Since most of malware programs include various code obfuscation techniques to foil static analysis, our ap-
proach is based on dynamic analysis. That is, we actually runmalware in a special environment, and observe
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how it implants the hook, and how the hook is activated by the operating system. Our approach is divided into
two steps: hook detection and hooking mechanism analysis.

Hook detection: fine-grained impact analysisOur approach is based on the following intuition. Malicious
code makes changes, including memory and the other machine state changes, to the execution environment as it
runs. We call these changes asimpacts. Obviously, a hookH is one of the impacts made by the malicious code,
and this impact finally redirects CPU’s control flow into the malicious code. Hence, if we are able to identify
all the impacts of the malicious code, and observe one of the impacts being used to cause the execution to be
redirected into the malicious code, we can determine a hook installed by the malicious code. Furthermore, we
are also interested in how an impact is formulated since initially, for the purpose of understanding the hooking
mechanism. Therefore, we identify theinitial impacts, the newly introduced impacts by the malicious code,
keep track of the impacts propagating over the system.

Based on this intuition, we proposefine-grained impact analysis. We mark all the initial impact made by
the malicious code at the byte level. The initial impacts include the data written directly by the malicious code,
and the data written by the external code on its behalf. Then we keep track of the marked impacts propagating
through the whole system. During the execution, if we observe that the instruction pointer (i.e.,EIP in x86
CPUs) is loaded with a marked impact, and the execution jumpsimmediately into the malicious code, then
we identify a hook. Furthermore, we have determined that thejump target is the hook entryF , the memory
location that the instruction pointer is loaded from is the hook siteL, and the content withinL is the hookH.

Hooking mechanism analysis: semantics-aware impact dependency analysisOnce identifying a hookH,
we want to understand the hooking mechanism. During the impact propagation, we record into a trace the
details about how the impacts are propagated in the system. Therefore, from the trace entry corresponding
to the detected hookH, we can perform backward dependency analysis on the trace. The result gives how
the hookH is formulated and installed into the hook siteL. However, such a result is difficult to understand,
because it only provides hardware-level information and sometimes can be big. We combine OS-level semantics
information with the result, and perform several optimizations to hide unnecessary details. The final output is a
succinct and intuitive graphical representation, which isstraightforward for malware analysts to understand its
hooking mechanism.

Note that our approach would catch “normal” hooking behaviors. Windows provides a number of APIs,
such asCreateThread andCreateWindow, for applications to register their callback functions. Windows
will invoke these callbacks on certain events. These normalhooking mechanisms can be compiled into a white-
list. Then when normal looks will be captured by our detection approach, we can classify them as normal
hooks, by extracting their hooking mechanisms and comparing with the white-list.

3 System Design and Implementation

To demonstrate the feasibility of our approach, we design and implement a system, HookFinder, to identify the
hooking behavior and understand the hooking mechanism. In this section, we give an overview of HookFinder
and describe its components.

3.1 System Overview

The overview of HookFinder in illustrated in Figure2. HookFinder is based on awhole-system emulator. It
emulates an x86 computer and runs a Windows guest system on top of it. The malware to be analyzed is
executed in the Windows guest. There are two reasons why we employ a whole-system emulator. First, it facil-
itates instrumenting CPU instructions in a fine-grained manner. In particular, we are able to instrument every
CPU instruction executed in the Windows guest system. Second, it provides an excellent isolation between the
analysis environment and the malware. Therefore, it is extremely difficult for malicious code to interfere with
our detection and analysis procedure and affect the analysis results. In the implementation, we use QEMU [2]
as our emulator, due to its efficiency and its open source code.

Within the emulator, we build three components:impact analysis engine, semantics extractor, andhook
detector. The impact analysis engine is a central component, which performs fine-grained impact analysis. It
marks the impacts made by the malware, and keeps track of impacts propagating over the whole system. A
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Figure 2: System Overview

whole-system emulator only provides a hardware-level viewof the system, such as the states of CPU registers,
physical memory, and I/O devices. However, malware analysts need to understand the malware and system
behaviors at the operating-system level. The semantics extractor implements the functionality of extracting
OS-level semantics information from the emulated environment. For example, it provides process and module
information of the current instruction executed. It can also provides information of external function calls. The
hook detector behaves like a controller, cooperating with the impact analysis engine and the semantics extractor
to identify hooks.

To analyze hooking mechanisms, the impact propagation events, as well as necessary OS-level semantics
information, are recorded into a trace, called theimpact trace. Thehook analyzeranalyzes the impact trace
and generates a succinct and intuitive graphical representation,hook graph. The hook graph conveys essential
information for malware analysts to easily understand the hooking mechanism.

3.2 Impact Analysis Engine

The impact analysis engine performs fine-grained impact analysis, and is composed of two sub-components:
impact markerand impact tracker. The impact marker is responsible for marking the initial impacts made by
the malicious code, and the impact tracker keeps track of theimpacts propagation.

Impact Marker In the impact marker, we aim to identify all the initial impacts that can be used to install the
hooks. This is important, because if we fail to mark some initial impacts, malware writers may exploit this fact
to evade our detection.

First, we consider the case that an instruction from malicious code directly make an impact. In this case,
we mark the destination operand, either memory location or aCPU register, if it is not marked already. Note
that the impact marker needs the information from the semantics extractor to determine whether an instruction
is from the malicious code.

In addition, we consider the case that malicious code may make an initial impact by calling an external
function. For example, it may callReadFile to obtain the address of the hook entryF from a configuration
file, and then install it as the hookH into the hook siteL by callingmemcpy, withoutH being marked. There-
fore, we need to mark the output of that external function too. Again, the semantics extractor can determine
when an instruction is executed under the context of an external function call.

To identify the outputs of an external function, we developed two different methods, for the registers and
memory, respectively. For register outputs, we take a snapshot on the entry of external function call, and when
the external function returns, we compare the register states with the snapshot, and mark the registers with
different values, with the exception ofESP, EBP andEIP. For memory outputs, we mark a memory location
if it is written under the context of the external function call, and it is not a local variable on the stack. To
determine a local variable, we obtain the stack range for thecurrent thread from the semantics extractor, and
compare the memory location with the value ofESP on the entry of the external function call: if the memory
location is smaller than the value ofESP and within the stack range, then it is a local variable.
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Furthermore, malware may dynamically generate new code. The self-generated code is also part of impacts
made by the malicious code, and therefore must be marked. Thus, we can determine if an instruction is gener-
ated from the original malicious code by simply checking if the memory region occupied by that instruction is
marked. If so, we also treat that code region as malicious code, and mark the inputs taken by the self-generated
code too.

Impact Tracker The impact tracker keeps track of the impacts propagating over the system. It tracks all
the data dependencies between source and destination operands. That is, if any byte of any source operand
is marked, the destination operand is also marked. In addition, for a memory source operand, if its address
becomes marked, we also mark the destination operand. This policy enables us to track how the malicious code
walks walk through a data structure, starting from a marked pointer to the data structure. These two policies
are similar to those in the dynamic taint analysis systems [7,10,11,18,28].

What makes impact tracker really different is the way it checks immediate operands. That is, if an instruc-
tion has an immediate operand, the impact tracker checks if the memory region occupied by this immediate
is marked and propagates impact accordingly. In contrast, the dynamic taint analysis systems treat immediate
operands as clean. In our scenario, instructions includingimmediate operands may be generated by the ma-
licious code, and therefore need to be checked. For example,in the code hook case, the malicious code may
inject into the system code a jump instruction with a hard-coded target address, to redirect the execution to the
malicious code. This immediate operand is deliberately injected by the malicious code to set up a hook.

To enable dependency analysis, the impact tracker performsan extra operation during the impact propaga-
tion. That is, we assign a unique identifier to each marked byte of the destination operand. We refer to this
identifier asdependency ID. Then for each instruction that creates or propagates the marked data, we write
a record into the impact trace. The record contains the relationships between the dependency IDs of marked
source and the destination operand, associated with other detailed information about that instruction.

3.3 Semantics Extractor

The semantics extractor bridges the semantic gap between the hardware-level view and the software-level view.
Specifically, the purposes of the semantics extractor are three-fold: (1) determine the process, thread, and
module information of the current executed instruction; (2) determine if an instruction is executed in the context
of an external function call, and if so, resolve its functionname and arguments; and (3) determine the symbol
name if a memory read is to a symbol.

Process, Thread, and Module Information Several previous systems [10, 14, 28] have discussed extracting
OS-level semantics from a virtual machine monitor or a whole-system emulator. Theoretically, the emulator
is able to extract information about process, thread and module, by examining the emulated system states.
However, for the simplicity of implementation, we employ the technique proposed in [28]. That is, we have
developed a kernel module and inserted into the emulated operating system to collect the process, thread, and
module information.

External Function Call Previous systems [10, 28] have also discussed how to determine external functions
called by the malicious code, by comparing the stack pointers. The intuition is that the malicious code has to
push the arguments and the return address onto the stack to call an external function. Thus by comparing the
stack pointer when the execution enters the malicious code,and the one when the execution leaves, we can
determine if the execution jumping out of the malicious codeis because of an external function call. We realize
this idea in our implementation of HookFinder.

Then given the entry address of an external function, we wantto resolve its function name. We achieve
this by parsing the PE header of a module whenever it is loadedinto the system. Each binary in the PE format
contains a table (Export Table) that for each of its exportedfunctions maps its name with its offset within the
binary. Combining the offset with the base address that the module is actually loaded in, we can infer the actual
address of an external function.

Symbol Name When an instruction reads a memory location, we want to determine if it is reading a symbol,
and if so, resolve the symbol name. This is useful in generating an OS-level hook graph. Similarly to resolving
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f8ab1ee6:	mov	0xf8ab20a0,%edi 
M[0xf8ab20a0]=0x804dd6e3

f8ab1f56:	mov	0x1(%edi),%eax

Impacted Address

f8ab1f59:	mov	0xf8ab20b4,%ecx
M[0xf8ab20b4]=0x80559b80

f8ab1f5f:	mov	(%ecx),%ecx

f8ab1f61:	movl	$0xf8ab166e,(%ecx,%eax,4) 
M[0x804e2efc]=0xf8ab166e

804df051:	mov	(%edi,%eax,4),%ebx

804df069:	call	*%ebx

aries.sys+ee6:	mov	ZwOpenKey,%edi 
[aries.sys+10a0]=0x804dd6e3

aries.sys+f56:	mov	0x1(%edi),%eax

impacted address

aries.sys+f59:	mov	KeServiceDescriptorTable,%ecx
M[aries.sys+10b4]=0x80559b80

aries.sys+f5f:	mov	(%ecx),%ecx

aries.sys+f61:	movl aries.sys+66e,(%ecx,%eax,4) 
M[ntoskrnl.exe+e2efc]=0xf8ab166e

ntoskrnl.exe+8051:	mov	(%edi,%eax,4),%ebx

ntoskrnl.exe+8069:	call *%ebx

(a) Hardware-level hook graph (b) OS-level hook graph

Figure 3: Hardware-level and OS-level hook graphs for a hookin Sony Rootkit.

external function name, we parse the PE header of a module whenever it is loaded into the system. We extract
symbol names with their offsets in both Export Table and Import Table, and infer the actual address of a symbol
using the module base address and its offset.

3.4 Hook Detector

The hook detector works by checking if the control flow is affected by some marked value, which redirects the
execution into the malicious code. More precisely, we observe whether the instruction pointerEIP is marked,
and the execution jumps immediately from the system code into the malicious code region, or the code region
generated from the malicious code. If the conditions are satisfied, we identify a hook: the jump target is the
hook entryF , the memory location that EIP is loaded from isL, and the content inL is H.

The above policy functions properly for identifying data hooks, but is problematic for code hooks. This is
because a code hook is a piece of code generated by the malicious code, and thus is treated as malicious code
by the above policy. Therefore when the code hook redirects the execution to the malicious code, the above
policy will not raise an alarm because it sees the execution being transferring from malicious code to malicious
code. To solve this problem, we extend the above policy, suchthat the execution transitions from a code hook
region into malicious code will raise an alert.

Then the question is how to distinguish code hook regions with the other self-generated code regions. Self-
generated code usually remains in the module space of the malicious code, or stays on a region that is not
occupied by any module (such as in heap), whereas a code hook region is a piece of code that overwrites a code
region in a different module. Therefore, during execution,if the currently executed basic block is marked and
from a different module, and EIP is marked and jumps into the malicious code, we identify a code hook.

3.5 Hook Analyzer

Once a suspicious hook is identified, the hook analyzer is able to extract essential information about its hooking
mechanism by performingSemantics-aware dependency analysison the impact trace. The procedure consists of
the following three steps: (1) from the hookH, perform backward dependency analysis on the impact trace,and
generate hardware-level hook graph; (2) with the OS-level semantics information, transform the hardware-level
hook graph into an OS-level hook graph; and (3) if necessary,simplify the hook graph by hiding unnecessary
details and merging the similar nodes. We detail these stepsrespectively.

Hardware-level Hook Graph Remember that each record in the impact trace has the dependency information.
Once identify a hookH, we obtain its dependency IDIDh. Since the impact trace records the relationships
between dependency IDs, we first search forward the impact trace for the record that definesIDh. From that
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record, we obtain the source dependency IDs thatIDh depends on. Then for each of the source dependency
IDs, we search backward for the record that defines it. If there are any source dependency IDs in that record, we
also perform the backward search for those IDs. We perform this backward search recursively until all records
have been located. Then we connect these records according to their dependency relationships. Besides the
dependency information, each record contains detailed information about an instruction, such as its address and
the values of its operands. If the instruction is executed under the context of an external function, the record
also contains the entry address of that external function, and the value ofESP on the entry of call. We put this
detailed information into the node corresponding to the record. The resultant graph is the hardware-level hook
graph. Figure3(a) shows a real hardware-level hook graph for a hook in Sony Rootkit [22], which employs the
same hooking mechanism as the sample shown in Figure1. A rectangle node denotes an instruction propagating
malware’s impacts. A diamond node denotes that its successor’s destination address affected by the malware.
Note that to save the space, we only display really importantinformation for each node, such as the instruction
address and the dissembled instruction. For each memory operand, we show its address and value. If the
instruction is executed under the context of an external function call, we can also show the entry of the function
call and the ESP value on the entry.

OS-level Hook Graph With the OS-level semantics information provided by the semantics extractor, we can
transform a hardware-level hook graph into an OS-level hookgraph. Given the address of the instruction, we
can show which module it belongs to and its offset to the module base. Similarly for memory access, we can
determine if it falls into any module space. If the memory access is to a symbol, we can even resolve the symbol
name. Given the entry address of an external function, we canresolve its function name. Then, the resultant
graph is an OS-level hook graph. Figure3(b) illustrates the OS-level hook graph that is transformedfrom
Figure3(a). We can see that Figure3(b) correctly reflects the hook registration procedure shown in Figure1.
That is, symbolsZwOpenKey andKeServiceDescriptorTable are used to calculate the hook siteL

(shown in the diamond-shaped node), and an address (aries.sys+66e) is written intoL. This isH, the address
of the hook entryF .

In addition to resolving function name, HookFinder can alsoidentify the function arguments from the
impact trace. Because pushing arguments is a type of impacts, those operations is recorded in the trace. For
each function activation in the trace, HookFinder locates the first record of the activation, denoted asi. The
records precede recordi contains function arguments. Normally, function arguments is pushed in reverse order,
i.e., the first argument is pushed onto the stack last.

Graph Simplification Sometimes, the resultant hook graph can be very complex. Forbetter readability and
clarity, we simplify it using the following criteria. (1) ifthe adjacent two nodes belong to the same external
function call, merge them together. (2) if the adjacent two nodes are move-like instructions, such as mov, push,
and pop, merge them together, and if those instructions propagate the same value without modification, we
merge those move-like instruction into a single node. We apply these two policies repeatedly until no nodes
can be merged.

4 Evaluation

In this section, we present details on the experimental results of HookFinder, by evaluating it with real-world
malware samples. We first give a summary of the experimental results over these samples, and then present
details on three of them. In all our experiments, we run HookFinder on a Linux machine with a dual-core
3.2 GHz Pentium CPU and 2GB RAM. On top of HookFinder, we install Windows XP Professional SP2 with
512M of allocated RAM as the guest operating system.

4.1 Overview

Our sample set consists of eight malware samples, which are obtained from public resources (such as [17,19])
and collaborative researchers. In Table1, we characterize these samples according to whether they are packed,
whether they are kernel or user threats, and which categories they belong to. Since deepdoor is not released by
its author, we use a similar kernel backdoor,Uay Backdoor, which resembles deepdoor’s hooking mechanism.
We include Uay backdoor to verify the capability of HookFinder in identifying novel hooks.
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Sample Size Packed? Kernel/User Category

Troj/Keylogg-LF 64K Y User Keylogger

Troj/Thief 334K N User Password Thief

AFXRootkit [1] 24K Y User Rootkit

CFSD [6] 28K N Kernel Rootkit

Sony Rootkit [22] 5.6K N Kernel Rootkit

Vanquish [25] 110K N User Rootkit

Hacker Defender [12] 110K N User&Kernel Rootkit

Uay Backdoor [24] 212K N Kernel Backdoor

Table 1: Malware Samples in Our Experiment

In the experiment, HookFinder has successfully identified hooks for all the samples. We summarize the
results in Table2. In the second column of Table2, we list the elapsed time for each sample. It breaks down
into two parts: the runtime for running the sample in the emulated environment (shown as the first number),
and the runtime for generating hook graphs (as the second number). After executing a sample, we wait for
2-3 minutes to make sure it has fully started. In order to trigger potential hook behavior, we then perform a
series of simple interactions with the emulated system, including listing a directory, and pinging a remote host,
which may cost another 2 or 3 minutes. The runtime for generating hook graphs varies from 2 seconds to 33
minutes, depending on the trace size, the number of hooks, and other factors. In total, HookFinder spends up
to 39 minutes on a sample during the evaluation, which is efficient compared to manual malware analysis that
can last hours or days.

The third column lists the size of the impact trace for each sample. As we can see, the maximum size in the
table is 14G, which is acceptable for a complex program executing millions of instructions.

The fourth and fifth column shows the number of suspicious hooks and the total number of identified hooks,
for each sample. We found some normal hooks registered by thefollowing functions: EVENTSINK AddRef,
FltDoCompleteProcessingWhenSafe, StartServiceDispatcherA, CreateThread, CreateRemoteThread, andPsCre-
ateSystemThread. Note that our approach does not distinguish the intent of a hooking behavior. Thus, we will
identify all hooks in the first place; then we may maintain a white-list for normal hooking mechanisms.

The last column gives essential information about the hooking mechanism. We found that three sam-
ples installed code hooks. All three samples derive the hooksites by callingGetProcAddress. Vanquish
directly writes the hooks into the hook sites, whereas AFXRootkit and Hacker Defender callWriteProcess-
Memoryand NtWriteVirtualMemoryrespectively to achieve it. The other six samples installeddata hooks,
four of which call external functions to install the hooks. In particular, CFSD callsFltRegisterFilter, and
Trojan/Keylogg-LF and Troj/Thief callSetWindowsHookEx. We also extracted arguments for these function
calls, and we found that Trojan/Keylogg-LF installed a WHKEYBOARD LL hook, and Trojan/Thief installed
a WH CALLWINDPROC hook. The remaining two samples directly write hooks into hook sites. The static
points areKeServiceDescriptorTableandNdisRegisterProtocolfor Sony Rootkit and Uay Backdoor, respec-
tively.

4.2 Detailed Analysis

Here we present detailed results for two malware samples: Uay Backdoor and Vanquish. The hook graph of
each sample is shown in Figure4.

Uay backdoor HookFinder identified five data hooks in total for this sample. We reviewed the generated hook
graphs, and we found that three of them were installed byPsCreateSystemThread. This kernel function creates
a system thread with the thread entry provided by the caller.Thus, these three hooks are normal hooks. The
other two are suspicious, and their hook graphs are similar.We show one graph in Figure4(a). We also show
the corresponding unsimplified hardware-level graph in Figure5 in the Appendix.
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Sample Runtime Trace Hooks Hooking Mechanism

Total Malicious

Troj/Keylogg-LF 6m+9m 3.7G 2 1 Data, Call:SetWindowsHookEx(WHKEYBOARDLL,...)

Troj/Thief 4m+3s 143M 1 1 Data, Call:SetWindowsHookEx(WHCALLWINDPROC,...)

AFXRootkit 6m+33m 14G 4 3 Code, Call:WriteProcessMemory

CFSD 4m+2m 2.8G 5 4 Data, Call:FltRegisterFilter

Sony Rootkit 4m+2s 25M 4 4 Data, Direct, Static Point:KeServiceDescriptorTable

Vanquish 6m+12m 4.4G 11 11 Code, Direct, Static Point:GetProcAddress

Hacker Defender 5m+27m 7.4G 4 1 Code, Call:NtWriteVirtualMemory

Uay backdoor 4m+25s 117M 5 2 Data, Direct, Static Point:NdisRegisterProtocol

Table 2: Summarized experimental results

As we can see in Figure4(a), there are two branches in the bottom. The left branch describes how the hook
siteL was inferred, and the right branch presents how the hookH was formulated. From the top of the right
branch, we can see thatH originated from the output of a function callNdisAllocateMemoryWithTag. This
kernel function is used to allocate a memory region in the kernel space. According to the function’s semantics,
this output has to be the address of the allocated memory region. This address is finally implanted into the hook
siteL.

From the top of the left branch, we observe thatL is derived from the output of a function callNdisRegis-
terProtocol. This kernel function registers a network protocol. According to the function semantics, we believe
this output is the protocol handle in the second argument. This handler points to an internal data structure
maintained by the Windows kernel. Then we can see the instruction (at uay.sys+1695) read a field with the
offset 0x10 in this data structure. The obtained value (v1) is then used as a pointer to read another value (v2)
from the offset 0x10 in the data structure pointed byv1, in the subsequent instruction (at uay.sys+16a0). Then,
the instruction (at uay.sys+1589) addsv2 with 0x40, and the resulted value is eventually used as the hook site
L. We believe that this sample actually walks into this internal data structure that it obtains fromNdisRegis-
terProtocol, and locates the designated hook siteL. Interestingly, the definition of the data structure for the
protocol handle created fromNdisRegisterProtocolis not released in any documentation from Microsoft, but
this malware sample seems to be able to understand this data structure, and knows how to locate the desired
hook site from it.

The hook graph for another suspicious hook is very similar tothis one, except that it addsv2 with 0x10.
With the knowledge of how this internal structure is defined,we would be able to tell which two functions this
malware sample actually hooked.

Vanquish HookFinder identified 11 code hooks in total for Vanquish. After reviewing the hook graphs,
we found that Vanquish hooked four unique APIs:RegCloseKey, LoadLibraryExW, RegEnumKeyWandRe-
gEnumKeyExW. Thus, multiple hooks may correspond to one API hooking, because Vanquish installs one hook
per process for that API.

We show a hook graph for hookingRegCloseKeyin Figure4(b). The other hook graphs are similar. First,
we can see the bottom node. This is the actual instruction Vanquish injected into the system code to set up the
hook. It is ajmp instruction, and its address is the entry point ofRegCloseKey. The rest of the graph shows
how the jump target of this instruction is formulated. Here the address of this jump target (i.e., 0x77dd6bf1)
is the hook siteL, and the content inL is H (i.e., 0x89d0e032). Again, the left branch represents howL was
inferred, and the right branch indicates howH was formulated.

The left branch starts with the output of function callGetProcAddress. This function returns the actual
function address, given an function name. Therefore, the source of the left branch is the address of a function
call, and the actual value is 0x77dd6bf0, which is the address for RegCloseKey. As we follow the links down,
we can see this address is added by 1 and used asL. Obviously, the offset 1 is for the opcode ofjmp. Now
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NDIS.sys+829a:	mov	%ecx,0x10(%ebx) 
Call:	NdisRegisterProtocal
[0x81dd0f38]=0x81e95ca8

uay.sys+1695:	mov	0x10(%eax),%esi

uay.sys+16a0:	mov	0x10(%esi),%esi

NDIS.sys+22faa:	call	*0x40(%eax)

uay.sys+1589:	lea	0x40(%esi),%eax

Simple Propagation

Impacted Address

NDIS.sys+115b:	mov	%eax,(%ecx)
Call:NdisAllocateMemoryWithTag

[0xf56f2cc4]=0x81e563a8

Simple Propagation

uay.sys+fcd:	mov	%eax,(%esi) 
[0x81ed3548]=0x81e563a8

Simple Propagation

NDIS.sys+827f:	mov	0xc(%ebp),%eax
Call: NdisRegisterProtocol

Impacted Address

NDIS.sys+828c:	mov	%ebx,(%eax)
Call: NdisRegisterProtocol
[0xf56f2d68]=0x81dd0f28

uay.sys+168d:	mov	0xfffffffc(%ebp),%eax

kernel32.dll+119ab4:	mov	%eax,(%esi)
Call: GetProcAddress

[0x61f81c]=0x77dd6bf0

kernel32.dll+ac81:	mov	0xc(%ebp),%eax
Call: GetProcAddress

Simple Propagation

vanquish.dll+2170:	sub	0x8(%ebp),%edx 

vanquish.dll+1ea7:	add	$0x1,%eax

vanquish.dll+2834:	push	$0x1ae4c22
[0x61f824]=0x1ae4c22

vanquish.dll+216d:	mov	0xc(%ebp),%edx 

advapi32.dll+6bf0:	jmp	0x89d0e032

vanquish.dll+2173:	sub	$0x5,%edx

vanquish.dll+2176:	mov	%edx,0xfffffff8(%ebp) 
[0x61f810]=0x89d0e02d

vanquish.dll+217f:	mov	0xfffffff8(%ebp),%ecx

vanquish.dll+2182:	and	$0xff,%ecx

vanquish.dll+218b:	mov	%cl,0x1(%edx) 
[0x1ae928d]=0x2d

vanquish.dll+1ea0:	mov	(%ecx),%dl 

Simple Propagation

Impacted Address

vanquish.dll+1ea2:	mov	%dl,(%eax) 
[0x77dd6bf1]=0x2d

(a) Hook graph of Uay backdoor (b) Hook graph of Vanquish

Figure 4: Analysis results. A rectangle node denotes an instruction. A diamond node denotes that its successor’s
destination address is derived from this node. An ellipse node labeled “simple propagation” denotes a sequence
of data moves.

for the right branch, we can see that it originates from an immediate (0x1ae4c22) pushed onto the stack. This
value is first subtracted by the address forRegCloseKey, and then subtracted by 5. Then the value is “and” with
0xff to get the lowest byte, and this byte is written to the hook siteL directly. Obviously, these steps are used
to calculate the relative address for thejmp instruction.

5 Discussion

In this section, we discuss the resilience of our system to various evasion techniques that malware writers may
exploit.

Exploiting Control Dependency The essential of our approach is to identify all the impacts made by the
malicious code, and keep track of the impact propagation viadata dependency. It is natural for malware writers
to think of exploiting control dependency, to evade our detection. For example, the malicious code may embed
a complex switch statement like below to cut the data dependency betweena andb.

switch(a)
{ case 1: b=1; break; case 2: b=2; break; ... }

This evasion is not viable. This is because that in the impactmarker, we thoroughly mark all the initial
impacts (i.e., memory and register writes) made by the malicious code. Thus, the outputb will be marked
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anyway.

Not Exhibiting Hooking Behaviors When Tested Malware may not exhibiting hooking behavior during the
dynamic analysis. It may stay inactive until certain conditions are satisfied. Malware may also detect the
presence of the emulated environment and stay dormant. In those cases, HookFinder cannot detect hooking
behavior. This is a common shortcoming of dynamic analysis.Some complementary work has been done to
address this problem. Vasudevan et al. proposed several stealthy techniques, such that malware cannot easily
detect the analysis environment [26]. Moser et al. [15] and Brumley et al. [3] also used QEMU to build malware
analysis systems, which are able to uncover hidden behaviors of malware by exploring multiple execution paths.
We will leave incorporating these techniques into HookFinder as future work.

6 Related Work

Hook detection. Researchers have developed several tools, such as VICE [4],System Virginity Verifier [20],
and IceSword [13], to detect the existence of hooks in the system. With prior knowledge how malicious code
usually set hooks, these tools examine known memory regionsfor suspicious entries. The common examined
places are system service descriptor table (i.e., SSDT) exported by the OS kernel, interrupt descriptor table
(i.e., IDT) that stores interrupt handlers, import addresstables (i.e., IAT) and export address tables (i.e., EAT)
of important system modules. Assuming that important system modules do not modify their code (with a few
exceptions), System Virginity Verifier checks if code sections of important system DLLs and drivers remain the
same in memory as those in the corresponding binaries on disk. In nature, these tools fall into misuse detection,
and thus cannot detect hooks in previously unknown memory regions. In comparison, our approach captures
the intrinsic characteristics of hooking behaviors: one ofthe malware’s impacts has to be used to redirect the
system execution into the malicious code. Therefore, it canidentify unknown hooking behaviors. Moreover, it
also provides insights about the hooking mechanisms.

Dynamic taint analysis. The fine-grained impact analysis resembles the dynamic taint analysis technique,
which is proposed to solve and analyze many other security related problems. Many systems [8, 9, 16, 18, 23]
detect exploits by tracking the data from untrusted sourcessuch as the network being misused to alter the
control flow. Other systems [7, 10, 28] make use of this technique to analyze how sensitive information is
processed by the system. Chow et al. applies dynamic taint analysis to understand the lifetime of sensitive
information (such as password) in operating systems and large programs [7]. Egele et al. utilize this technique
to analyze BHO-based spyware behavior [10]. Yin et al. also make use of dynamic taint analysis to detect and
analyze privacy-breaching malware [28]. Moreover, dynamic taint analysis is used for other applications, such
as automatically extracting protocol message formats [5],and preventing cross-site scripting attacks [27].

7 Conclusion

In this paper, we presented a novel dynamic analysis approach, fine-grained impact analysis, to identify mal-
ware hooking behaviors. This approach characterizes malware’s impacts on its system environment, and ob-
serves if one of the impacts is used to redirect the system execution into the malicious code. Since it captures
the intrinsic characteristics of hooking behavior, this technique is able to identify novel hooks. Moreover, we
devised asemantics-aware impact dependency analysismethod to extract the essential information about the
hooking mechanisms, which is represented as hook graphs. Wedeveloped a prototype, HookFinder, and con-
ducted extensive experiments using representative malware samples from various categories. The experimental
results demonstrated that HookFinder can correctly identify the hooking behaviors for all the samples, and
generated hook graphs provide accurate insights about their hooking mechanisms.
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Appendix: Hardware-level Hook Graphs

f83c827f:	mov	0xc(%ebp),%eax 

Callee: 0xf83c817d ESP: 0xf56f2cdc

f83c828c:	mov	%ebx,(%eax) 

Callee: 0xf83c817d ESP: 0xf56f2cdc

f83c828c:	mov	%ebx,(%eax) 

Callee: 0xf83c817d ESP: 0xf56f2cdc

[0xf56f2d68]=0x81dd0f28

f5b5c68d:	mov	0xfffffffc(%ebp),%eax

f83c829a:	mov	%ecx,0x10(%ebx) 

Callee: 0xf83c817d ESP: 0xf56f2cdc

[0x81dd0f38]=0x81e95ca8

f5b5c695:	mov	0x10(%eax),%esi

f5b5c511:	push	%esi

[0xf56f2cd8]=0x81e95ca8

f5b5c60d:	push	%eax

[0xf56f2ce4]=0xf56f2d68

f5b5c5bc:	pop	%esi

f5b5c6a0:	mov	0x10(%esi),%esi

f5b5c511:	push	%esi

[0xf56f2cd8]=0x81e68d50

f5b5c69a:	push	%esi 

[0xf56f2cec]=0x81ef2218

f5b5c513:	mov	0x8(%ebp),%edi

8056c91a:	mov	%edi,%edi

8056c938:	push	%edi 

Callee: 0x0 ESP: 0xf56f2cd4

[0xf56f2ca8]=0x81ef2218

8056c987:	pop	%edi 

Callee: 0x0 ESP: 0xf56f2cd4

f83e2faa:	call	*0x40(%eax)

f5b5c583:	mov	(%edi),%esi

f5b5c589:	lea	0x40(%esi),%eax

f5b5c58c:	push	%eax

[0xf56f2cc4]=0x81ed3548

f5b5bf13:	mov	0xc(%ebp),%esi

806f447f:	push	%esi 

Callee: 0x0 ESP: 0xf56f2ca8

[0xf56f2c8c]=0x81ed3548

804df993:	pop	%esi 

Callee: 0x0 ESP: 0xf56f2ca8

8054b051:	push	%esi 

Callee: 0xf83c1145 ESP: 0xf56f2c9c

[0xf56f2c38]=0x81ed3548

f5b5bf4f:	push	%eax

[0xf56f2ca0]=0xf56f2cc4

f83c1158:	mov	0x8(%ebp),%ecx 

Callee: 0xf83c1145 ESP: 0xf56f2c9c

8054b12f:	pop	%esi 

Callee: 0xf83c1145 ESP: 0xf56f2c9c

f5b5bfcd:	mov	%eax,(%esi)

f83c115b:	mov	%eax,(%ecx) 

Callee: 0xf83c1145 ESP: 0xf56f2c9c

f83c115b:	mov	%eax,(%ecx) 

Callee: 0xf83c1145 ESP: 0xf56f2c9c

[0xf56f2cc4]=0x81e563a8

f5b5bfc5:	mov	0xc(%ebp),%eax

f5b5bfcd:	mov	%eax,(%esi)

[0x81ed3548]=0x81e563a8

f5b5bf44:	push	%edi 

[0xf56f2cac]=0x81ef2218

f5b5bfcf:	pop	%edi

Figure 5: Hardware-level hook graph for Uay backdoor
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7c919ab4:	mov	%eax,(%esi) 
Callee: 0x7c80ac28 ESP: 0x61f814

[0x61f81c]=0x77dd6bf0

7c80ac81:	mov	0xc(%ebp),%eax 
Callee: 0x7c80ac28 ESP: 0x61f814

1ae12e0:	mov	%eax,0xfffffffc(%ebp) 
[0x61f820]=0x77dd6bf0

1ae12e3:	mov	0xfffffffc(%ebp),%eax

1ae2823:	mov	%eax,0x1ae92d0
[0x1ae92d0]=0x77dd6bf0

1ae2839:	mov	0x1ae92d0,%edx

1ae282a:	push	$0x1ae928c
[0x61f82c]=0x1ae928c

1ae2188:	mov	0x14(%ebp),%edx 1ae21d7:	mov	0x14(%ebp),%ecx

1ae2834:	push	$0x1ae4c22
[0x61f824]=0x1ae4c22

1ae216d:	mov	0xc(%ebp),%edx 
1ae283f:	push	%edx 
[0x61f820]=0x77dd6bf0

1ae2170:	sub	0x8(%ebp),%edx 1ae21db:	mov	0x8(%ebp),%edx

77dd6bf0:	jmp	0x89d0e032

1ae2173:	sub	$0x5,%edx

1ae2176:	mov	%edx,0xfffffff8(%ebp) 
[0x61f810]=0x89d0e02d

1ae217f:	mov	0xfffffff8(%ebp),%ecx

1ae2182:	and	$0xff,%ecx

1ae218b:	mov	%cl,0x1(%edx) 
[0x1ae928d]=0x2d

1ae218b:	mov	%cl,0x1(%edx) 

1ae1ea0:	mov	(%ecx),%dl 

1ae21da:	push	%ecx 
[0x61f800]=0x1ae928c

1ae1ead:	mov	0xc(%ebp),%ecx 

1ae21de:	push	%edx 
[0x61f7fc]=0x77dd6bf0

1ae1ea4:	mov	0x8(%ebp),%eax

1ae1ea7:	add	$0x1,%eax

1ae1eaa:	mov	%eax,0x8(%ebp)
[0x61f7fc]=0x77dd6bf1

1ae1e9a:	mov	0x8(%ebp),%eax 

1ae1eb0:	add	$0x1,%ecx

1ae1eb3:	mov	%ecx,0xc(%ebp) 
[0x61f800]=0x1ae928d

1ae1e9d:	mov	0xc(%ebp),%ecx 

1ae1ea2:	mov	%dl,(%eax) 

1ae1ea2:	mov	%dl,(%eax) 
[0x77dd6bf1]=0x2d

Figure 6: Hardware-level hook graph for Vanquish
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