

The Law Enforcement
Introduction to Linux

A Beginner's Guide

Barry J. Grundy
Special Agent

NASA Office of Inspector General
Computer Crimes Division
Code 190 Greenbelt Rd.
Greenbelt, MD 20771

(301)286-3358
bgrundy@imx.hq.nasa.gov

VER 1.8.1

 2

LEGALITIES.. 3
FOREWORD .. 4
A WORD ABOUT THE “GNU” IN GNU/LINUX.. 5

I. INSTALLATION...6
DISTRIBUTIONS... 7
INSTALLATION METHODS:... 8
INSTALLATION OVERVIEW... 8

II. LINUX DISKS, PARTITIONS AND THE FILESYSTEM..10
DISKS... 10
PARTITIONS... 10
THE FILESYSTEM .. 12

III. THE LINUX BOOT SEQUENCE (SIMPLIFIED)..14

BOOTING THE KERNEL .. 14
INITIALIZATION ... 15
RUNLEVEL.. 15
GLOBAL STARTUP SCRIPTS.. 16
BASH.. 16

IV. DOS / LINUX EQUIVALENT COMMANDS...17
"DOS COMMAND" = LINUX EQUIVALENT ... 17
ADDITIONAL USEFUL COMMANDS.. 20
PIPES AND REDIRECTION .. 25
THE SUPERUSER... 26

V. EDITING WITH VI..27
USING VI ... 27
VI COMMAND SUMMARY ... 28

VI. MOUNTING FILE SYSTEMS AND DISKS ...29
THE MOUNT COMMAND ... 29
THE FILE SYSTEM TABLE (/ETC/FSTAB)... 31

VII. LINUX AND FORENSICS..33
ANALYSIS ORGANIZATION.. 34
DETERMINING THE STRUCTURE OF THE DISK .. 35
CREATING AN IMAGE OF THE SUSPECT DISK ... 36
MOUNTING A RESTORED IMAGE.. 36
MOUNTING THE IMAGE USING THE LOOPBACK DEVICE ... 37
USING MODULES.. 37
MODULES ON NEWER SYSTEMS... 38
FILE HASH .. 38
THE ANALYSIS... 39
MAKING A LIST OF ALL FILES .. 40
MAKING A LIST OF FILE TYPES.. 41
VIEWING FILES .. 42
SEARCHING UNALLOCATED AND SLACK SPACE FOR TEXT .. 43
HANDLING LARGE DISKS.. 45
PREPARING A DISK FOR THE SUSPECT IMAGE ... 48
CONCLUSION.. 50

 3

VIII. LINUX SUPPORT...51
WEB SITES TO CHECK FOR SUPPORT : ... 51

Legalities

All trademarks are the property of their respective owners.

© 2001 Barry J. Grundy (bgrundy@imx.hq.nasa.gov): This document may
be redistributed, in its entirety, including the whole of this copyright notice,
without additional consent if the redistributor receives no remuneration and if
the redistributor uses these materials to assist and/or train members of law
enforcement. Otherwise, these materials may not be redistributed without the
express written consent of Barry J. Grundy.

 4

Foreword

 This purpose of this document is to provide an introduction to the
GNU/Linux operating system for Investigators. There are better books
written on the subject of GNU/Linux (by better qualified professionals), but
my hope here is to provide a single document that allows a user to sit at the
shell prompt (command prompt) for the first time and not be overwhelmed
by a 700 page book.

In addition, tools available to investigators for forensic analysis are
presented. This is by no means meant to be the definitive “how-to” on
forensic methods using GNU/Linux. Rather, it is a starting point for
those who are interested in pursuing the self education needed to become
proficient in the use of Linux as an investigative tool. Not all of the
commands offered here will work in all situations, but by describing the
basic commands available to the Investigator I hope to “start the ball rolling”.
I will present the commands, the reader needs to followup on the more
advanced options and uses. Knowing how these commands work is every
bit as important as knowing what to type at the prompt. If you are even an
intermediate Linux user, then much of what is contained in these pages will be
review. Still, I hope you find some of it useful.

As always, I am open to suggestions and critique. My contact

information is on the front page. If you have ideas, questions, or comments,
please don’t hesitate to call or e-mail me. Any feedback is welcome.

 This document is always being updated. Check for newer versions
(numbered on the front page) at:

http://home.columbus.rr.com/bgrundy/linlaw

or in the “resources” section of the Ohio HTCIA website:

 http://www.ohiohtcia.org/resource.html

 5

A word about the “GNU” in GNU/Linux

When we talk about the Linux operating system, we are actually talking about
the GNU/Linux operating system (OS). Linux itself is not an OS. It is just a
kernel. The OS is actually a combination of the Linux kernel and the GNU
utilities that provide the tools allowing us to interact with the kernel. Which is
why the proper name for the OS is “GNU/Linux”. We (incorrectly) call it
“Linux” for convenience.

 6

I. Installation

 First and foremost, know your hardware. If your Linux machine is to
be a dual boot system with Windows, then use the Windows Device
Manager to record all your installed hardware and the settings used by
Windows. If you are setting up a standalone Linux system, then gather as
much documentation about your system as you can. This has become much
less important with the evolution of the Linux install routines. Hardware
compatibility and detection has been greatly improved over the past couple
of years.
• Hard drive
• SCSI adapters and devices
• Sound card
• Video Card (important to know your chipset, memory).
• Monitor timings

• Horizontal and vertical refresh rates.
• Network card settings
• Network Parameters

• IP (if not DHCP)
• Netmask
• DNS servers
• Default gateway

• Modem
• NO WINMODEMS. (support is being worked on – check

http://www.linmodems.org. Note that if you have an HSF modem,
Conexant has released linux drivers! Find them at
http://www.conexant.com/customer/).

• USB support in kernel 2.4. USB is becoming a standard feature of Linux
with newer distributions that ship with the 2.4 series kernel.

For Redhat, you can check for hardware compatibility and installation issues
at: http://www.redhat.com/support/hardware/

If you cannot find your monitor documentation and need it for Xfree86 (the
Linux GUI) setup, then go to:
http://www.monitorworld.com/monitors_home.html

 7

Distributions

 1. RedHat
 The most popular Linux distribution (right now, but losing
ground). RedHat works with companies like Dell, IBM and Intel to assist
business in the adoption of Linux for enterprise use. Use of RPM and
Kickstart began the first "real" user upgrade paths for Linux.

2. Debian
 Not for beginners. The installation routine is not as polished as
some other distributions. A hacker favorite. Just adopted the 2.2 series
kernel. The most “non-commercial” Linux distro and true to the spirit of
GNU/GPL.

3. SuSE
 Another distribution with it's own proprietary install program,
YaST2. German in origin. SuSE is by far the largest distribution, and comes
with six (6!) CD's (or a DVD). There are tons of included applications, most
notably Vmware and Real Player.
 5. Slackware
 The original commercial distribution. Slackware has been
around for years. Installation is not as easy as others. Good standard Linux.
Not over-encumbered by GUI config tools.

6. Others (and many more):
TurboLinux
Mandrake Linux (rapidly gaining on RedHat’s market share).

My suggestion for the absolute beginner would be either the newest

version of Mandrake (currently 8.2) or RedHat (currently 7.2). Mandrake is
actually a RedHat based distribution with numerous GUI enhancements that
make the learning process easier for “newbies”. I suggest RedHat based
distributions because the online support is huge, and the installed base is the
largest. This is only a suggestion. If you really want to “dive in” and bury
yourself, go for Debian or Slackware.
 One thing to keep in mind: If you are going to use GNU/Linux in a
forensic capacity, then try not to rely on GUI tools too much. Almost all
settings and configurations in GNU/Linux are maintained in text files (usually
in either your home directory, or in /etc). By learning to edit the files
yourself, you avoid problems when either the X window system is not
available, or when the specific GUI tool you rely on is not on the system.

 8

Installation Methods:

• Buy a book! (most come with a distro)
• Download the needed files, create a boot and root disk and read online!

(See the “Linux Support” section on page 50)
• Get hold of a distribution CD and boot from it (change your bios to boot

from the CD if needed).

 If you have access to a bootable installation CDROM (download an
ISO image and burn it on a CDR, buy a book that includes a distro, etc.),
then this process will be easier. Much of the work is done for you, and
relativley safe defaults are provided. As mentioned earlier, hardware
detection has gone through some great improvements in the last year or two.
 Typical Linux installation is well documented online (check the “how-
tos” at www.linuxdoc.org). There are numerous books available on the
subject, and most of these are supplied with a Linux distribution ready for
install.
 Bootable ISO’s can downloaded from www.linuxiso.org and burned
to a CD. Familiarize yourself with Linux disk and partition naming
conventions (covered in Chapter II of this document) and you should be
ready to start.

Installation Overview

1. Decide on standalone Linux or dual boot.

 -install Windows first in a dual boot system.
-do NOT create any extra partitions with Windows fdisk. Just
leave the space unallocated. The Linux install will create the
partitions.

2. Boot the Linux Media
-hopefully you have a bootable CDROM (and booting from the
CD is supported in your bios.)
-you can use a boot.img to create a bootable floppy for the
install from the installation CD if booting from the CD is not
possible.

3. Accepting most defaults works.
Your hardware will be detected and configured under most (if
not all) circumstances. If the install freezes or breaks, try again

 9

in “text” mode or “expert” mode, if available. This is often
caused by video card problems.

4. Partition and format for Linux
-at least two partitions.
-Root (/) as type “Linux Native”.
-Swap as type “Linux Swap” (use 2x your system memory as a
starting point for swap size).

5. Package installation (system)
-

 10

II. Linux Disks, Partitions and the Filesystem

Disks
 Linux treats its devices as files. The special directory where theses
"files" are maintained is "/dev".

 Floppy (a:) /dev/fd0
 Floppy (b:) /dev/fd1

 1st Hard disk (master, IDE-0) /dev/hda
 2nd Hard disk (slave, IDE-0) /dev/hdb

3nd Hard disk (master, IDE-1) /dev/hdc etc.
 1st SCSI hard disk /dev/sda
 2nd SCSI hard disk /dev/sdb etc.

Partitions
1st Hard disk (master, IDE-0) /dev/hda

• 1st Primary partition /dev/hda1
• 2nd Primary partition /dev/hda2 etc.
• 1st Logical drive /dev/hda5
• 2nd Logical drive /dev/hda6 etc.

2nd Hard disk (slave, IDE-0) /dev/hdb
• 1st Primary partition /dev/hdb1 etc.

CDROM (master, IDE-1) /dev/hdc
CDROM (SCSI) /dev/scd0
1st SCSI disk /dev/sda etc.

The pattern described above is fairly easy to follow. If you are using a
standard IDE disk, it will be refered to as "hdx" where the "x" is replaced
with an "a" if the disk is connected to the primary IDE controller as master
and a "b" if the disk is connected to the primary IDE controller as a slave
device. In the same way, the IDE disks connected to the secondary IDE
controller as master and slave will be referred to as "hdc" and "hdd"
respectivley.

 11

This is an example of the output of fdisk -l /dev/hda on a dual boot system:

Disk /dev/hda: 255 heads, 63 sectors, 1582 cylinders
Units = cylinders of 16065 * 512 bytes

 Device Boot Start End Blocks Id System
/dev/hda1 1 255 2048256 b Win95 FAT32
/dev/hda2 * 256 638 3076447+ 83 Linux
/dev/hda3 639 649 88357+ 82 Linux swap
/dev/hda4 650 1582 7494322+ f Win95 Ext'd (LBA)
/dev/hda5 650 1453 6458098+ b Win95 FAT32
/dev/hda6 1454 1582 1036161 b Win95 FAT

 fdisk –l /dev/hdx gives you a list of all the partitons available on a
particular drive. Each partition is identifed by its Linux name. The "boot
flag" is indicated, and the beginning and ending cylinders for each partition is
given. The number of blocks per partiton is displayed. Finally, the partition
"Id" and file system type are displayed. To see a list of valid types, run
fdisk and at the prompt type "l" (the letter “el”). Do not confuse Linux fdisk
with DOS fdisk. They are very different. The Linux version of fdisk
provides for much greater control over partitioning.

 Note that if you use a parallel ZIP drive, it will be accessed as /dev/sda
(assuming no other SCSI devices). Support must be compiled into the
kernel (most new distros have it already compiled in). A Linux formatted
ZIP disk is /dev/sda1 and a DOS (FAT) formatted ZIP disk is /dev/sda4 (no,
I don't know why).

 BEFORE THESE DEVICES CAN BE USED, THEY MUST BE
MOUNTED! Any partitions you define during installation will be mounted
automatically every time you boot. We will cover the mounting of devices in
the section that deals with Linux commands, after you have some navigation
experience.

 12

The Filesystem

 Like the Windows file system, the Linux file system is hierarchical. the
"top" directory is refered to as "the root" directory and is represented by
"/". Note that the following is not a complete list, but provides a introduction
to some important directories.

 / (“root” not to be confused with “/root”)
 |_ bin
 |_ <files> ls, chmod, sort, date, cp, dd
 |_boot
 |_<files> vmlinuz, system.map
 |_ dev
 |_<devices> hd*, tty*, sd*, fd*, cdrom
 |_ etc
 |_X11
 |_ <files> XF86Config, X
 |_<files> lilo.conf, fstab, inittab, conf.modules
 |_ home
 |_barry (your user’s name is in here)
 |_<files> .bashrc, .bash_profile, personal files
 |_other users
 |_mnt
 |_cdrom
 |_floppy
 |_root
 |_<root user's home directory>
 |_sbin
 |_<files> shutdown, cfdisk, fdisk, insmod
 |_usr
 |_local
 |_lib
 |_man

 13

On most Linux distributions, the directory structure is organized in the
same manner. Certain configuration files and programs are distribution
dependant, but the basic layout is similar to this.

Directory contents can include:
/bin

-Common commands.
/boot

-Files needed at boot time, including the kernel images pointed
to by LILO (the LInux LOader). Also includes information needed to
load modules during bootup.
/dev

-Files that represent devices on the system. These are actually
interface files to allow the kernel to interact with the hardware and the
filesystem.
/etc

-Administrative configuration files and scripts.
/home

-Directories for each user on the system. Each user directory
can be extended by the respective user and will contain their personal
files.
/mnt

-Provides mount points for external, remote and removeable file
systems and devices.
/root

 -The root user's home directory.
/sbin

 -Administrative commands and process control daemons.
/usr

 -Contains local software, libraries, documentation, games, etc.

 14

III. The Linux Boot Sequence (Simplified)

Booting the kernel

 The first step in the boot up sequence for Linux is loading the kernel.
The kernel image is usually contained in the /boot directory. It can go by
several different names…

• bzImage
• vmlinuz

Sometimes the kernel image will specify the kernel version contained in

the image, i.e. bzImage-2.2.12. Very often there is a softlink (like a shortcut)
to the most current kernel image in the /boot directory. It is normally this
softlink that is referenced by the LILO. LILO specifies the “root device”,
along with the kernel version to be booted. This is all controlled by the file
/etc/lilo.conf

more /etc/lilo.conf

boot=/dev/hda
map=/boot/map
install=/boot/boot.b
prompt
timeout=50
image=/boot/vmlinuz
 label=linux
 root=/dev/hda3
 read-only
image=/boot/vmlinuz-2.2.9-19mdk
 label=linux_old
 root=/dev/hda3
 read-only
other=/dev/hda1
 label=dos
 table=/dev/hda

 15

You can see the kernel messages that “fly” past the screen during
bootup with the command dmesg. Often, this command can be used to find
hardware problems that occur during bootup, or to see how your suspect
drive was detected (geometry, etc). The output can be piped through a
paging viewer to make it easier to see:

dmesg | less

Initialization

 The next step starts with the program /sbin/init. This program really
has two functions:

• initialize the runlevel and startup scripts
• terminal process control (respawn terminals)

In short, the init program is controlled by the file /etc/inittab. It is this

file that controls your runlevel and the global startup scripts for the system.

Runlevel

 The runlevel is simply a description of the system state. For our
purposes, it is easiest to say that (for RedHat, at least – other systems, like
Suse may differ):

• runlevel 0 = shutdown
• runlevel 1 = single user mode
• runlevel 3 = full multiuser mode / text login
• runlevel 5 = full multiuser / X11 / graphical login
• runlevel 6 = reboot

In the file /etc/inittab you will see a line similar to:

id:3:initdefault:

It is here that the default runlevel for the system is set. If you want a

text login (which I would strongly suggest), set the above value to “3”. If
you want a graphical login, you would edit the above line to contain a “5”.

 16

Global Startup Scripts

After the default runlevel has been set, init (via /etc/inittab) then runs

the following scripts:
• /etc/rc.d/rc.sysinit - handles system initialization, filesystem mount

and check, PNP devices, etc.
• /etc/rc.d/rc X - where X is the runlevel passed as an argument by

init. This script then calls the specified script for the runlevel that
is being started.

• /etc/rc.d/rc.local - called from within the specific runlevel scripts,
rc.local is a general purpose script that can be edited to include
commands that you want started at bootup (sort of like
autoexec.bat).

Again, this is somewhat Redhat / Mandrake specific. Other
distributions can differ slightly.

Bash

 Bash (Bourne Again Shell) is the default command shell for RedHat,
Mandrake, and many other Linux distros. It is the program that sets the
environment for your command line experience in Linux. The functional
equivalent in DOS would be command.com. There are a number of shells
available, but we will cover bash here.
 There are actually quite a few files that can be used to customize a
user’s Linux experience. We will concentrate on two that will get you
started. I am assuming here that you are using the bash shell.

• /home/$USER/.bashrc - This script is located in each user’s home
directory ($USER) and can be edited by the user, allowing him or
her to customize their own environment. It is in this file that you
can add aliases to change the way commands respond.

• /etc/bashrc - This is the global bash initialization file. Edits made
to this file will be applied to all users using the bash shell.

The Bash startup sequence is actually more complicated than this, but
this should give you a starting point. In addition to the above files,
check out .bash_profile and /etc/profile.

 17

IV. DOS / Linux Equivalent Commands

"DOS command" = Linux equivalent

"dir" = ls
 ls –F classifies files and directories.
 ls –a show all files (including hidden).
 ls –l detailed file list (long view).

 ls –lh detailed list (long,with “human readable” file sizes).

 Output of ls -l

total 11
drwx------ 5 barry 501 1024 Feb 7 15:07 Desktop
drwxr-xr-x 2 barry users 1024 Feb 9 08:19 Files
drwx------ 2 barry users 1024 Dec 18 15:58 Mail
-rw-r--r-- 1 barry users 0 Feb 9 09:21 Mydata.file.today
drwxr-xr-x 26 barry users 1024 Jan 23 00:49 Office51
drwxr-xr-x 2 barry users 1024 Nov 8 16:21 Prog
drwxr-xr-x 2 barry users 1024 Dec 16 15:42 Programming
drwxr-xr-x 2 barry users 1024 Feb 9 09:27 Sample
drwxr-xr-x 2 barry users 1024 Feb 9 08:41 autosave
drwxr-xr-x 2 barry users 1024 Feb 8 15:50 bin
drwx------ 2 barry 501 1024 Oct 9 14:00 nsmail
drwxrwxr-x 3 barry 501 1024 Jan 23 00:42 software
-rw-r--r-- 1 barry users 0 Feb 9 09:20 textfile

"cd" = cd
 cd back to your home directory.

cd .. up one directory (note the space between “cd” and
“..”.

 cd - back to the last directory you were in.
cd /dirname change to the specified directory. Note that the

addition of the “/” in front of the directory implies
an explicit path, not a relative one. With practice,
this will make more sense.

 18

"copy" = cp
 cp sourcefile destinationfile copy a file.

“cls” = clear
 clears the terminal screen of all text and returns a prompt.

"move" and "ren" = mv
 mv sourcefile destination move or rename a file.

"del" = rm (be careful, undelete is not so easy!)
 rm filename deletes a file.
 rm -r recursively deletes all files in
 directories and subdirectories.

"help" or " /?" = man
 man command displays a "manual" page for the specified
 command. Use "q" to quit. VERY USEFUL.
 Output of man find:

FIND(1L) FIND(1L)

NAME
 find - search for files in a directory hierarchy

SYNOPSIS
 find [path...] [expression]

DESCRIPTION
 This manual page documents the GNU version of find. find
 searches the directory tree rooted at each given file name
 by evaluating the given expression from left to right,
 according to the rules of precedence (see section OPERA-
 TORS), until the outcome is known (the left hand side is
 false for and operations, true for or), at which point
 find moves on to the next file name.
 <CONTINUES>

 19

"md" = mkdir
 mkdir directoryname creates a directory.

 "type" = cat or more or less

cat filename The simplest form of file display, cat streams the
contents of a file to the standard output. cat
actually stands for “concatenate”. This command
can also be used to add files together (useful later
on…). For example:

 cat file1 file2 > file3

Takes the contents of file1 and file2 and streams
the output which is redirected to a single file, file3.
This effectively adds the two files into one single
file (the original files remain unchanged).

 more filename displays the contents of a file one page at a time.
 Unlike its DOS counterpart, Linux more takes
 filenames as direct arguments.

less filename less is a better more. Supports scrolling in both
directions, and the ability to search. less is actually
the GNU version of more, and on many systems
you will find that more is actually a link to less.

 Note that you can string together several options. For example:

 ls -aF

 will give you a list of files, including hidden files and file/directory
classification ("/" for directories, "*" for executables, and "@" for links).

 20

Output of ls –aF :
./

../

.Xauthority

.Xdefaults

.bash_history

.bash_logout

.bash_profile

.bashrc

.emacs

.gnome/

.gnome_private/

.gqviewrc

.gxedit

.gxedit.apps

.kaudioserver

.kde/

.kderc

.kpackage/

.mailcap

.maxwellrc

.netscape/

.sversionrc

.user.rdb

.vimrc

.zshrc

Desktop/

Files/

Mail/

Mydata.file.today

Office51/

Prog/

Programming/

Sample/

autosave/

bin/

mylink@

nsmail/

samp_script.sh*

snapshot01.gif

software/

textfile

Additional useful commands

grep - search for patterns in a file (or in the output of another command).

 grep pattern filename

will look for occurances of pattern within the file filename. grep is an
extremely powerful tool. It has hundreds of uses given the large
number of options it supports. Check the man page for more details.

find -allows you to search for a file (wild cards – actually “regular
expressions” permitted). To look for your XF86Config file, you might try:

 find / -name XF86Config -print

 This means "find, starting in the root directory (/), by name,
 XF86Config and print the results to the screen".

pwd -prints the present working directory to the screen.

 pwd
 /home/barry

 21

file -categorizes files based on what they contain, regardless of the name
 (or extension, if one exists). Compares the file header to the "magic"
 file in an attempt to ID the file type. For example:

 file snapshot01.gif
 snapshot01.gif: GIF image data, version 87a, 800 x 600

ps -list of current processes. Gives the process ID number (PID), and

the terminal on which the process is running.

ps -ax shows all processes (-a), and all
 processes without an associated
 terminal (-x).

Output (partial) of ps -ax on my system as it is running right now:

PID TTY STAT TIME COMMAND
 1 ? S 0:04 init
 2 ? SW 0:00 [kflushd]
 3 ? SW 0:00 [kupdate]
 4 ? SW 0:00 [kpiod]
 5 ? SW 0:00 [kswapd]
 191 ? S 0:01 /sbin/pump -i eth0
 232 ? S 0:00 syslogd -m 0
 243 ? S 0:00 klogd
328 tty1 SW 0:00 [login]
 329 tty2 S 0:00 login -- root
 330 tty3 S 0:00 /sbin/mingetty tty3
 331 tty4 S 0:00 /sbin/mingetty tty4
 332 tty5 S 0:00 /sbin/mingetty tty5
 333 tty6 S 0:00 /sbin/mingetty tty6
 340 tty1 SW 0:00 [bash]
 353 tty1 S 0:00 sh /usr/X11R6/bin/startx
 360 tty1 S 0:00 xinit /etc/X11/xinit/xinitrc -- :0 -auth /home/barry/
 361 ? R 2:04 /etc/X11/X :0 -auth /home/barry/.Xauthority
 365 tty1 S 0:05 kwm
 368 tty1 S 0:00 kbgndwm

 22

jobs -gives a list of the "jobs" that are currently running. A good
 indicator of the command line muli-tasking of Linux. Each
 job is assigned a "job number" which can then be used to "kill"
 the jobs or run them in the foreground or background.

strings -prints out the readable characters from a file. Will print out

strings from a file that are at least four characters long (by
default). Useful for looking at data files without the originating
program, and searching executables for useful strings, etc.

chmod -changes the permissions on a file.

 First, a short description of permissions:
 Files in Linux have certain specified file permissions. These
 permissions can be viewed by running the ls -l command on a
 directory or on a particular file. For example:

 ls –l q2.script

 -rwxr-xr-x 1 barry user 1643 Jan 19 23:23 q2.script

If you look close at the first 10 characters, you have a dash (-)
followed by 9 more characters. The first character describes
the type of file. A dash (-) indicates a regular file. A "d" would
indicate a directory, and "b" a special block device, etc.

 The next 9 characters indicate the file permissions. These are
 given in groups of three

User Group Others

rwx rwx rwx

 The characters indicate
 r = read
 w = write
 x = execute

 23

So in the above q2.script we have
 -rwxr-xr-x

 This give the user (file owner) read, write and execute
 permissions, but restricts other members of the users group
 and users outside that group to only read and execute the file.

Now back to the chmod command. There are a number of
ways to use this command, including explicitly assigning r, w, or x to
the file. We will cover the octal method here because the syntax is
easiest to remember. In this method, the syntax is as follows

 chmod octal filename

octal is a three digit numerical value in which the first
digitrepresents the user, the second digit represents the group, and the
third digit represents others outside the user's group. Each digit is
calculated by assigning a value to each permission:

 read (r) = 4
 write (w) = 2
 execute (x) = 1

 For example, the file q2.script in our original example has an
 octal permission value of 755. If you wanted to change the
 file so that the owner and the group had read, write and
 execute permissions, but others would only be allowed to read
 the file, you would issue the command:

chmod 774 q2.script

 A new long list of the file would show:

 -rwxrwxr-- 1 barry user 1643 Jan 19 23:23 q2.script

chown -changes the owner of a file in much the same way as chmod
changes the permissions.

 24

chown ralph q2.script

-rwxrwxr-- 1 ralph user 1643 Jan 19 23:23 q2.script

chgrp - changes a file’s group attribute. Works the same as chown, but
affects the group instead of the owner.

shutdown -this command MUST be used to shutdown the machine and

cleanly exit the system. This is not DOS. Turning off the machine at
the prompt is not allowed and can damage your filesystem. You can
run several different options here (check the man page for many more):

 shutdown -r now will reboot the system now.

shutdown -h now will halt the system. Ready for power down.

Metacharacters
 Linux also supports wildcards (metacharacters)

• * for multiple characters (including ".").
• ? for single characters.
• [] for groups of characters or a range of characters or

numbers.
This is a complicated and very powerful subject, and will require
further reading… Refer to “regular expressions” in your favorite Linux
text, along with “globbing” or “shell expansion”.

Command Hints
1. Linux supports command line editing.
2. Linux has a History List of previously used commands.
 -use the keyboard arrows to scroll through commands
 you've already typed.
3. Linux commands and filenames are CASE SENSITIVE.
4. Learn output redirection for stdout and stderr.
5. Linux uses “/” for directories, DOS uses “\”.
6. Linux uses “-“ for command options, DOS uses “/”
7. To execute commands in the current directory (if the current directory

is not in your PATH), use the syntax "./command". This tells Linux to
look in the present directory for the command.

 25

Pipes and Redirection

 Like DOS, Linux allows you to redirect the output of a
command from the standard output (usually the display or "console") to
another device or file. This is useful for creating files that contain lists of files
on a mounted volume, or in a directory. For example:

ls -al > filelist.txt

would output a long list of all the files in the current directory. Instead of
outputting the list to the console, a new file called "filelist.txt" will be created
that will contain the list. If the file "filelist.txt" already existed, then it will be
overwritten. Use the following command to append the output of the
command to the existing file, instead of over-writing it:

ls -al >> filelist.txt

 Another useful tool similar to that available on DOS is the
command pipe. The command pipe takes the output of one command and
"pipes" it straight to the input of another command. This is an extremely
powerful tool for the command line.
 Look at the following process list:
 ps -ax

 PID TTY STAT TIME COMMAND
 1 ? S 0:04 init
 232 ? S 0:00 syslogd -m 0
 271 ? S 0:00 inetd
 328 tty1 SW 0:00 [login]
 329 tty2 S 0:00 login -- root
 330 tty3 SW 0:00 [mingetty]
 331 tty4 SW 0:00 [mingetty]
 340 tty1 SW 0:00 [bash]
 353 tty1 SW 0:00 [startx]
 360 tty1 SW 0:00 [xinit]
 361 ? R 2:41 /etc/X11/X :0 -auth /home/barry/.Xauthority
 519 pts/0 S 0:00 bash
 2451 pts/0 S 0:00 -bash
 2490 tty2 S 0:00 -bash

 26

 2727 pts/1 R 0:00 ps -ax
What if all you wanted to see were those processess ID's that

indicated a bash shell? You could "pipe" the output of ps to the input of
grep, specifying "bash" as the pattern for grep to search. The result would
give you only those lines of the output from ps that contained references to
"bash".

 ps -ax | grep bash

340 tty1 SW 0:00 [bash]
519 pts/0 S 0:00 bash
2451 pts/0 S 0:00 -bash
2490 tty2 S 0:00 -bash

The SuperUser
 If Linux gives you an error message "Permission denied", then in all
likelihood you need to be "root" to execute the command or edit the file, etc.
You don't have to log out and then log back in as "root" to do this. Just use
the "su" command to give yourself root powers (assuming you know root’s
password).

su -

 Then enter the password when prompted. You now have root
privileges (the system prompt will reflect this). Note that the "-" after "su"
allows Linux to apply root's path to your "su" login. So you don't have to
enter the full path of a command.

When you are finished using your "su" login, return to your own self
by typing "exit".

A word of caution. Be VERY judicious in your use of the root login.
It can be destructive. For simple tasks that require root permission, use "su"
and use it sparingly.

 27

V. Editing with Vi

 There are a number of terminal mode editors available in Linux,
including emacs and vi. You could always use one of the available GUI text
editors in Xwindow, but what if you are unable to start X? The benefit of
learning vi or emacs is your ability to use them from an xterm, a character
terminal, or a telnet (use ssh instead!) session, etc. We will discuss vi here.
(I don't do emacs :-)). vi in particular is useful, because you will find it on all
versions of Unix. Learn vi and you should be able to edit a file on any Unix
system.

Using Vi

 You can start vi either by simply typing vi at the command prompt, or
you can specify the file you want to edit with vi filename. If the file does
not already exist, it will be created for you.

 vi consists of two operating modes, command mode and insert mode.
When you first enter vi you will be in command mode. Command mode
)).

 28

Vi command summary

Insert Mode:

a = append text (after the cursor)
i = insert text (directly under the cursor)
o (the letter “oh”) = open a new line under the current line
O (capital “oh”) = open a new line above the current line

Command Mode:
 0 (zero) = Move cursor to beginning of current line.
 $ = Move cursor to the end of current line.
 x = delete the character under the cursor
 X = delete the character before the cursor
 dd = delete the entire line the cursor is on
 :w = save and continue editing
 :wq = save and quit (can use ZZ as well)
 :q! = quit and discard changes
 :w filename = save a copy to filename (save as)

 The best way to save yourself from a messed up edit is to hit <ESC>
followed by :q!

 Another useful feature that can be used in command mode is the string
search. To search for a particular string in a file, make sure you are in
command mode and type

 /string

 Where string is your search target. After issuing the command, you
can move on to the next hit by typing "n".

 vi is an extremely powerful editor. There are a huge number of
commands and capabilities that are outside the scope of this guide. See man
vi for more details. Keep in mind there are chapters in books devoted to this
editor. There are even a couple of books devoted to vi alone.

 29

VI. Mounting File Systems and Disks

 There is a long list of file systems that can be accessed through Linux.
You do this by using the mount command. Linux has a special directory
used to mount file systems to the existing Linux directory tree. This
directory is called /mnt. It is here that you can dynamically attach new
filesystems from external (or internal) storage devices that were not mounted
at boot time. Actually you can mount files anywhere (not just on /mnt), but
it's better for organization. Here is a brief overview.

 Any time you specify a mount point in /mnt, you must first make sure
that you have a directory under /mnt to use. After all, suppose we want to
have a CDROM and a floppy mounted at the same time? They can't both be
mounted under /mnt (you would be trying to access 2 filesystems through
one directory!). So we create directories for each device under the parent
directory /mnt. You decide what you want to call the directories, but make
them easy to remember. Keep in mind that until you learn to manipulate the
file /etc/fstab (covered later), only root can mount and unmount disks and
filesystems.

mkdir /mnt/floppy
mkdir /mnt/cdrom

 Newer distributions usually create these mountpoints for you, but you
might want to add others for yourself (mountpoints for subject disks or
copies, etc.)

The Mount Command

 The "mount" command uses the following syntax:

mount -t <filesystem> -o <options> <device> <mountpoint>

Example: Reading a DOS / Windows floppy

• Insert the floppy and type:

mount -t vfat /dev/fd0 /mnt/floppy

 30

• Now change to the newly mounted filesystem:

cd /mnt/floppy

• You should now be able to navigate the floppy as usual.
• When you are finished, EXIT OUT OF THE /mnt/floppy

directory, and unmount the file system with:

umount /mnt/floppy

• Note the proper command is umount, not unmount. This

cleanly unmounts the disk. DO NOT remove the disk OR
SWAP the disk until it is unmounted.

• If you get an error message that says the filesystem cannot
be unmounted because it is busy, then you most likely have a
file open from that directory, or are using that directory from
another terminal. Check all you xterms and virtual terminals.

Example: Reading a CDROM

• Insert the CDROM and type:

mount -t iso9660 /dev/cdrom /mnt/cdrom

• Now change to the newly mounted filesystem:

cd /mnt/cdrom

• You should now be able to navigate the CD as usual.
• When you are finished, EXIT OUT OF THE /mnt/cdrom

directory, and unmount the file system with:

umount /mnt/cdrom

 If you want to see a list of which filesystems are currently mounted,
just use the mount command without any arguments or parameters. It will
list the mount point and filesystem type of each device on system, along with

 31

the mount options used (if any). This is actually read from a file called
/proc/mounts, part of a virtual filesystem that keeps an up to date “snapshot”
of the current system configuration. Try the following two commands:

mount
more /proc/mounts

The ability to mount and unmount filesystems is an important skill in
Linux. There are a large number of options that can be used with mount
(some we will cover later), and a number of ways the mounting can be done
easily and automatically. Refer to the mount info or man pages for more
information.

The file system table (/etc/fstab)
It might seem like "mount -t iso9660 /dev/cdrom /mnt/cdrom" is

alot to type every time you want to mount a CD or a disk. One way around
this is to edit the file /etc/fstab. This file allows you to provide defaults for
your mountable devices, thereby shortenting the commands required to
mount them. My /etc/fstab looks like this:

/dev/hda2 / ext2 defaults 1 1
/dev/hda5 /mnt/apps vfat user,noauto,defaults 0 0
/dev/hda6 /mnt/data vfat user,noauto,defaults 0 0
/dev/hda3 swap swap defaults 0 0
/dev/fd0 /mnt/floppy vfat user,noauto 0 0
/dev/hdc /mnt/cdrom iso9660 user,noauto,ro 0 0
/dev/sda4 /mnt/zip vfat user,noauto,defaults 0 0
none /proc proc defaults 0 0

The columns are:
<device> <mount point> <filesystem> <default options>

 With this /etc/fstab, I can mount a floppy or CD by simply typing:

mount /mnt/floppy
mount /mnt/cdrom

 The above mount commands look incomplete. When not enough

 32

information is given, the mount command will look to /etc/fstab to fill in the
blanks. If it finds the required info, it will go ahead with the mount.

Note the "user" entry in the options column for some devices. This
allows non-root users to mount the devices. Very useful. To find out more
about available options for /etc/fstab, enter info fstab at the command
prompt.

 Also keep in mind that default Linux installations will often create
/mnt/floppy and /mnt/cdrom for you already. After installing a new Linux
system, have a look at /etc/fstab to see what is available for you. If what you
need isn’t there, add it.

 33

VII. Linux and Forensics

Linux comes with a number of simple utilities that make imaging and
basic analysis of suspect disks and drives comparitively easy. These tools
include:

• dd or cp -command used to copy from an input file
or device to an output file or device. Simple bitstream
imaging.

• cfdisk and fdisk -used to determine the disk
structure.

• grep -search files (or multiple files) for instances of
an expression or pattern.

• chmod -change the default permissions on a file.
Used to turn off the write permissions of an image file.

• The loop device -allows you to mount an image
without having to rewrite the image to a disk.

• sha1sum -create and store an SHA hash of a file or
list of files (including devices).

• file -reads a file’s header information in an attempt to
ascertain it’s type, regardless of name or extension.

• xxd - command line hexdump tool. For veiwing a file
in hex mode.

• ghex and khexedit -the Gnome and KDE (X
Window interfaces) hex editors. Both have primitive
search and byte selection capabilities.

Following is a very simple series of steps to allow you to perform an easy
practice analysis using the simple Linux tools mentioned above. All of the
commands can be further explored through the output of “man command”.
For simplicity we are going to use a floppy from a DOS machine.

 34

Analysis organization
 Most of the work you will do here can be applied to actual casework.
The tools are standard Linux tools, and although the example shown here is
very simple, it can be extended with some practice and a little (ok, a lot) of
reading.
 The output of various commands and the amount of searching we will
do here is limited by the scope of this example and the amount of data on a
floppy. When you actually do an analysis on larger media, you will want to
have it organized. Note that when you issue a command that results in an
output file, that file will end up in your current directory, unless you specify a
path for it in the command.
 One way of organizing your data would be to create a directory in your
“home” directory for evidence and then a subdirectory for different cases.

 mkdir ~/evidence

 The tilde (~) in front of the directory name is shorthand for “home
directory”, so when I type ~/evidence, Linux interprets it as
/home/barry/evidence. If I am logged in as root, then the directory will be
created as /root/evidence. Note that if you are already in your home
directory, then you don't need to type ~/. Simply using mkdir evidence will
work just fine. We are being explicit for instructional purposes.

Directing all of our analysis output to this directory will keep our
output files separated from everything else and maintain case organization.

For the purposes of this exercise, we will be logged in as “root”. I
have mentioned already that this is generally a bad idea, and that you can
make a mess of your system if you are not careful. Many of the commands
we are utilizing here require root acess (permissions should not be changed
to allow otherwise, IMHO). So the output files that we create and the images
we make will be found under /root/evidence/

An additonal step you might want to take is to create a special mount
point for all disk analysis. This is another way of separating common system
use with evidence processing. Note that since we will be directly accessing
hardware and the root filesystem, we will have to su to root to perform this
and the next steps of this analysis.

 mkdir /mnt/analysis

 35

Determining the structure of the disk
There are two simple tools available for determining the structure of a

disk attached to your system. The first, fdisk, we discussed eariler using the
-l option. Replace the “x” with the letter of the drive that corresponds to the
subject drive.

fdisk –l /dev/hdx

Disk /dev/hda: 255 heads, 63 sectors, 1582 cylinders
Units = cylinders of 16065 * 512 bytes
 Device Boot Start End Blocks Id System
/dev/hda1 1 255 2048256 b Win95 FAT32
/dev/hda2 * 256 638 3076447+ 83 Linux
/dev/hda3 639 649 88357+ 82 Linux swap
/dev/hda4 650 1582 7494322+ f Win95 Ext'd (LBA)
/dev/hda5 650 1453 6458098+ b Win95 FAT32
/dev/hda6 1454 1582 1036161 b Win95 FAT

We can redirect the output of this command to a file for later use by
issuing the command as:

fdisk –l /dev/hdx > fdisk.disk1

 A couple of things to note here: The name of the output file
(fdisk.disk1) is completely arbitrary. There are no rules for extensions.
Name the file anything you want. I would suggest you stick to a convention
and make it descriptive. Also note that since we did not define an explicit
path for the file name, fdisk.disk1 will be created in our current directory (for
instance, /root/evidence/).

The second tool you might consider is a “graphical” tool called
cfdisk. This tool serves the same function as fdisk, but is easier to navigate
and is menu driven, allowing for eaiser partition manipulation (when
required).

cfdisk /dev/hdx

 Keep in mind that although cfdisk is easier to use, it’s output is not
formatted for redirection to a text file.

Note that you can expect to see strange output if you use this
command on a floppy disk. Be aware of that if you attempt cfdisk or fdisk
on the practice floppy. Try it on your harddrive instead.

 36

Creating an image of the suspect disk
 Make an image of the practice disk. This is your standard backup of a
suspect disk.

 dd if=/dev/fd0 of=image.disk1 bs=512

This takes your floppy device (/dev/fd0) as the input file (if) and writes the
output file (of) called image.disk1 in the current directory. The bs option
specifies the blocksize. This is really not needed for most block devices
(hard drives, etc.) as the actual block size is handled by the Linux kernel.

For the sake of saftey, change the read-write permissions of your
image to read-only.

 chmod 444 image.disk1

 The 444 gives all users read-only access. If you are real picky, you
could use 400. Note that the owner of the file is the user that created it.

Now that you have created an image file, you can restore the image to
another disk for analysis and viewing. Put another (blank) floppy in and type:

dd if=image.disk1 of=/dev/fd0 bs=512

 This is the same as the first dd command, only in reverse. Now you
are taking your image and writing it to another disk to be used as a backup or
as a working copy for the actual analysis.

Mounting a restored image
 Mount the restored disk and view the contents. Remember, we are
assuming this is a DOS formatted disk from a Win 98/95 machine.

 mount -t vfat -o ro,noexec /dev/fd0 /mnt/analysis

 This will mount your restored disk on “/mnt/analysis”. The “–o
ro,noexec” specifies the options ro (read-only) and noexec (prevents the
execution of binaries from the mount point) in order to protect the disk from
you, and your system (and mountpoint) from the contents of the disk.

Now cd to the mount point (/mnt/analysis)and browse the contents.

 37

Mounting the image using the loopback device
 Another way to view the contents of the image without having to use
another disk is to mount using the loop interface. The loop device driver
must first be installed by “inserting” it’s module (Linux “modular” driver)
into the running kernel. The various modules available on your system are
located in /lib/modules/$KERNEL-VERSION/. They are object files that
contain the required driver code for the supported device or option
(filesystem support under Linux is often loaded as a module). Note that the
current kernel version can be found using the command uname -r.

Using modules
 Modules are installed and removed from the system “on the fly” using
the following commands (as root):

insmod -to insert the module
 rmmod -to remove the module
 lsmod -to get a list of currently installed modules

We install the loop module (loop.o) with:

 insmod /lib/modules/2.2.12-20/block/loop.o
 ^ your kernel version goes here
 If you are using a newer 2.4 kernel based distribution (most probably
are, use uname –r to determine your kernel version), then the module
directories are structured a little different and the command would be:

insmod /lib/modules/2.2.12-20/kernel/drivers/block/loop.o
 ^ your kernel version goes here

Now check to see if the module has been correctly loaded with:

 lsmod

The output should be:
Module Size Used by
loop 7744 0 (unused)

 note that the output will include any other drivers loaded as modules

 38

by the system as well (some at boot up).

Modules on Newer systems
 On newer Linux systems (like the one you are probably using now)
there an automatic kernel daemon that handles the loading and unloading of
modules automatically. When you issue a command that requires a module
that is not yet loaded, the kernel will detect your request and load the
applicable module. The module “autoloader” is useful and ends the need to
install modules by hand using insmod. It is likely that your system follows
this convention.

We are now ready to mount the image using the loopback device. We
use the same mount command and the same options, but this time we include
the option “loop” to indicate that we want to use the loop device to mount
the image. Change to the directory where you created the image and type:

mount -t vfat -o ro,noexec,loop image.disk1 /mnt/analysis

 Now you can change to /mnt/analysis and browse the image as if it
were a mounted disk! Keep in mind that this sort of analysis is much harder
to initiate as any user other than root. The insertion and deletion of the loop
module (if required), as well as the mounting of the image using the loop
device must be done as root (the mounting can be done by a user with the
proper /etc/fstab editing, but it’s not versitile). Use the mount command to
double check the mounted options.

File Hash
One important step in any analysis is verifying the integrity of your data

both before after the analysis is complete. You can get a hash (CRC, MD5,
or SHA) of each file in a number of different ways. We will use the SHA
hash. SHA is a hash signature generator that supplies a 160 bit “fingerprint”
of a file or disk. It is not feasible for someone to computationally recreate a
file based on the SHA hash. This means that matching SHA signatures mean
identical files.
 We can get an SHA sum of a disk by changing to our evidence
directory (i.e. /root/evidence) and doing:

 sha1sum /dev/fd0 > SHA.disk1

The redirection allows us to store the signature in a file and use it for

 39

verification later on. In addition we can get a hash of each file on the disk
using the find command and an option that allows us to execute a command
on each file found. We can get a very useful list of SHA hashes for every file
on a disk (once it is mounted) by changing to the /mnt/analysis directory:

 cd /mnt/analysis

 and issuing the command:

find . -type f -exec sha1sum {} \; > /root/evidence/SHA.filelist

 This command says “find, starting in the current directory (signified
by the “.”), any regular file (-type f) and execute (-exec) the command
sha1sum on all files found ({}). Redirect the output to SHA.filelist in the
/root/evidence directory (where we are storing all of our evidence files). The
“\;” is an escape sequence that ends the command.

You can also use Linux to do your verification for you. To verify that
nothing has been changed on the original floppy, you can use the -c option
with sha1sum. If the disk was not altered, the command will return “ok”.
Make sure the floppy is in the drive and type:

sha1sum -c /root/evidence/SHA.disk1

 If the SHA hashes match from the floppy and the original SHA output
file, then the command will return “OK” for /dev/fd0. The same can be done
with the list of file SHAs. Mount the floppy on /mnt/analysis, change to that
directory and issue the command:

 sha1sum -c /root/evidence/SHA.filelist

 Again, the SHA hashes in the file will be compared with SHA sums
taken from the floppy (at the mountpoint). If anything has changed, the
program will give a “failed” message. Unchanged files will be marked “OK”.

The analysis
You can now view the contents of the restored disk or mounted image.

If you are running the X window system, then you can use your favorite file

 40

browser to look through the disk. In most (if not all) cases, you will find the
command line more useful and powerful in order to allow file redirection and
permanent record of your analysis. We will use the command line here.

We are also assuming that you are issuing the following commands
from the proper mount point (/mnt/analysis/). If you want to save a copy of
each command’s output, be sure to direct the output file to your evidence
directory (/root/evidence/)

Navigate through the directories and see what you can find. Use the ls
command to view the contents of the disk. The command in the following
form might be useful:

ls –al

 This will show all the hidden files (-a), give the list in long format to
identify permission, date, etc. (-l). You can also use the –R option to list
recursivley through directories. You might want to pipe that through less.

ls –alR | less

Making a list of all files
 Get creative. Take the above command and redirect the output to
your evidence directory. With that you will have a list of all the files and their
owners, permissions and time stamps on the suspect disk. This is a very
important command. Check the man page for various uses and options.
For example, you could use the –i option to include the inode in the list, the
–u option can be used include and sort by access time (when used with the –
t option).

 ls –laiRtu > /root/evidence/file.list

 You could also get a list of the files, one per line, using the find
command and redirecting the output to another list file:

 find . -type f -print > /root/evidence/filelist.list.2

 Have a look at the above two commands, and compare their output.
Which do you like better? Remember the above syntax assumes you are
issuing the command from the /mnt/analysis directory (use pwd if you don’t

 41

know where you are).

 Now use the grep command on either of the file lists for whatever
strings or extensions you want to look for.

 grep -i jpg filelist.list

 This command looks for the pattern “jpg” in the list of files.

Making a list of file types
What if you are looking for JPEG’s but the name of the file has been

changed, or the extension is wrong? You can also run the command file on
each file and see what it might contain.

 file filename

 If there are a large number of files without extensions, or where the
extensions have changed, you might want to run the file command on all 0 Tc -0.6.536 -17.25 TD -173623 Tc 060488 Tw (fisnd oa disk. Remenumu) Tj473.75 0 TD -0.2266 Tc 164141 Twberurow use of thst c o m m a E G ’ e - ptnsios wihe

file

man. () Tj431.5 0 TD -0.2453 Tc 0 Tw (-) Tj4.5 0 TD -173175 Tc -.20974 Twe ty f () Tj731.5 0 TD -0.2453 Tc 0 Tw (-) Tj4.5 0 TD -00875 Tc -.55745 Tw (ecch fil{} () T6731.5 0 TD -011045 Tc 0 Tw\() Tj73.75 0 TD -040223 Tc 227117 Tw; > /root/evidence/h fie tyst.list) T17433.75 0 TD 0 Tc 0.1875 Tw () Tj2237 -16.5 TD /F0 14.25 Tf() Tj0 -16.5 Tf-0.0139 Tc 4-175 TwViewin the liss wihn thmorthe comma,le ant if you are looking foe gret tspecifyhn at:() T10453.25 0 TD 0 Tc 0.1875 Tw () Tj23937.25 -16.5 TD () Tj0 -17.25 TD /F1 14.25 Tf-0051 0 Tc 20.217 Tw(wha/root/evidence/h fie tyst.li | (greimagid) T25593.75 0 TD 0 Tc 0.1875 Tw () Tj5593.75 -17.25 TD () Tj0 -16.5 TD /F0 14.25 Tf-121597 Tc 0.3974 Tw (This commanwoulandtreamun the nextiste orurod) T2736 0 TD /F4 14.25 Tf-168016 Tc 0 Twh fie tyst.list) T6018.75 0 TD /F0 14.25 Tf-458623 Tc 095748 Tw h filusokine whle

 42

Viewing files
For text files and data files, you might want to use cat, more or less

to view the contents.

 cat filename
 more filename
 less filename

 Be aware that if the output is not standart text, then you might corrupt
the terminal output (type “reset” at the prompt and it should clear up). It is
best to run these commands in a terminal window in X so that you can
simply close out a corrupted terminal and start another. Using the file
command will give you a good idea of which files will be viewable.

Perhaps a better alternative for viewing files would be to use the
strings command. This command can be used to parse regular text out of
any file. It’s good for formatted documents (MS Word or StarOffice), data
files (Excel, etc.) and even binaries (i.e. unidentified executables) might have
interesting text strings hidden in them. It might be best to pipe the output
through less.

strings filename | less

Have a look at the contents of the practice disk on /mnt/analysis.

There is a file called arp.exe. What does this file do? We can’t execute it,
and from using the file command we know that it’s an i386 executable. Run
the following command (again, assuming you are in the /mnt/analysis
directory) and scroll through the output.

strings arp.exe | less

Did you find anything of interest (hint: like a usage message for the

executable)?

If you are currently running the X window system, you can use any of

the graphics tools that come standard with whichever Linux Distribution you
are using. gqview is one graphics tool for the Gnome desktop that will
display thumbnails of all the recognized graphic files in a directory.

 43

Experiment a little.

Once you are finished exploring, be sure to unmount the floppy (or

image). Again, make sure you are not anywhere in the mountpoint when you
try to unmount, or you will get the “busy” error.

 umount /mnt/analysis

Searching unallocated and slack space for text
 Now let’s go back to the original image. The restored disk (or loop
mounted image) allowed you to check all the files and directories. What
about unallocated and slack space? We will now analyze the image itself,
since it was a byte for byte copy and includes data in the unallocated areas of
the disk, as well as file slack space.
 Lets assume that we have seized this disk from a former employee of a
large corporation. The would-be cracker sent a letter to the corporation
threatening to unleash a virus in their network. The suspect denies sending
the letter. This is a simple matter of finding the text from a deleted file
(unallocated space).

First, change back to the directory in which you created the image,
whether it was the root’s home directory, or a special one you created.

 cd /root/evidence

 Now we will use the grep command to search the image for any
instance of an expression or pattern. We will use a number of options to
make the output of grep more useful. The syntax of grep is normally:

 grep –options <pattern> <search_range>

 The first thing we will do is create a list of keywords to search for.
Open a text editor and make a list of terms you want to search for. For our
example, lets use “ransom”, “$50,000” (the ransom amount), and “unleash a
virus”. These are some keywords and a phrase that we have decided to use
from the original letter received by the corporation. Make the list of
keywords (using vi) and save it as /root/evidence/searchlist.txt. Ensure that
each string you want to search for is on a different line.

 44

$50,000
ransom
unleash a virus

Make sure there are NO BLANK LINES IN THE LIST OR AT THE

END OF THE LIST!! Now we run the grep command on our image:

grep –aibf searchlist.txt image.disk1 > hits.txt

 Looking at the grep command we see that we are asking grep to use
the list we created in “searchlist.txt” for the patterns we are looking for. This
is specified with the “-f listfile” option. We are telling grep to search
image.disk1 for these patterns, and we are redirecting the output to a file
called hits.txt, so we can record the output and view them at our leisure. The
option –a tells grep to output all the lines where there are hits, not just the
name of the file where there are hits. The option -i tells grep to ignore upper
and lower case. And the -b option tells grep to give us the byte offset of
each hit so we can find the line in xxd or one of the graphical hex editors, like
GHex.
 Once you run the command above, you should have a new file in your
current directory called hits.txt. View this file with less or more or any text
viewer. Keep in mind that strings might be best for the job. Again, if you
use more or less, you run the risk of corrupting your terminal. We will
simply use cat to stream the entire contents of the file to the standard output.
The file hits.txt should give you a list of lines that contain the words in your
searchlist.txt file. In front of each line is a number that represents the byte
offset for that line in the image file.

cat hits.txt

75441:you and your entire business ransom.
75500:I have had enough of your mindless corporate piracy and will no
longer stand for it. (…)
75767:Don't try anything, and dont contact the cops. If you do, I will
unleash a virus that will bring down your whole network and destroy your
consumer's confidence.

 45

Now open GHex. Find it on the KDE or Gnome menus, or simply
type ghex & in a terminal window. It is a standard hex editor. Open the
image file, and click on <Edit> and then <Goto Byte>. Type in the byte
offset given in your hits.txt file and it should take you to that byte in the hex
screen. the ASCII equivalent is displayed on the right. Do this for each
offset in the list of hits. This should yield some interesting results. If you
want to stay in the command line, you can use xxd to display the data found
at each byte offset.

xxd -s offset image.disk1 | less

Handling large disks
 The example used in this text utilizes a filesystem on a floppy disk.
What happens when you are dealing with larger hard disks? When you create
an image of a disk drive with the dd command there are a number of
componets to the image. These components can include a boot sector,
partition table, and the various partitions (if defined).
 When you attempt to mount a larger image with the loop device, you
find that the mount command is unable to find the filesystem on the disk,
because it does not know how to “recognize” the partition table. The easy
way around this (although it is not very efficient for large disks) would be to
create separate images for each disk partition that you want to analyze. For a
simple hard drive with a single large parition, you would create two images.
These are “logical” images of each partition.

Assuming your suspect disk is attached as the master device on the
secondary IDE channel:

 dd if=/dev/hdc of=image.disk bs=4096 (gets the entire disk)
 dd if=/dev/hdc1 of=image.part1 bs=4096 (gets the first partition)

 The first command gets you a full image of the entire disk for backup
purposes, including the boot sector and partition table. The second
command gets you the partition. The resulting image from the second
command can be mounted via the loop device.

(if defined).

 46

image with the loop device) is to send the mount command a message to skip
trying to mount the first 63 sectors of the image. These sectors are used to
contain information (like the MBR) that is not part of a normal data partition.
We know that each sector is 512 bytes, and that there are 63 of them. This
gives us an offset of 32256 bytes from the start of our image to the first
partition we want to mount. This is then passed to the mount command as
an option:

mount –t vfat –o ro,noexec,loop,offset=32256 image.disk /mnt/analysis

 This effectivley “jumps over” the first 63 sectors of the image and
goes straight to the “boot sector” of the first partition, allowing the mount
command to work properly.

When you are dealing with larger disks (over 2GB), you must also
concern yourself with the size of your image files. If your Linux distribution
relies on the 2.2.x kernel then you will encounter a file size limit of 2GB (on
x86 systems). The Linux 2.4.x kernel solves this problem. You can either
compile the 2.4.x kernel on your current system, or wait for a distribution that
includes the 2.4.x kernel in it’s default installation (they are on the shelf now).
In order for the new 2.4.x kernel to work properly (if you upgrade it
yourself), you will also need to upgrade modutils and glibc. Note that some
2.2.x kernel based distributions provide a fix for this “out of the box”, but it
is an exception rather than a rule.

Now that we know about the issues surrounding creating large images
from whole disks, what do we do if we run into an error? Suppose you are
creating a disk image with dd and the command exits halfway through the
process with a read error? We can instruct dd to attempt to read past the
errors using the conv=noerror option. In basic terms, this is telling the dd
command to ignore the errors that it finds, and attempt to read past them.
When we specify the noerror option it is a good idea to include the sync
option along with it. This will “pad” the dd output wherever errors are
found and ensure that the output will be “syncronized” with the original disk.
This may allow filesystem access where errors are not fatal. The command
will look something like:

dd if=/dev/hdx of=image.disk1 conv=noerror,sync

In addition to the structure of the images and the issues of image sizes,

 47

we also have to concearn ourselves with memory usage and our tools. You
might find that grep, when used as illustrated in our floppy analysis example,
might not work as expected with larger images and could exit with an error
similar to:

grep: memory exhausted

The most apparent cause for this is that grep does it’s searches line
by line. When you are “grepping” a large disk image, you might find that you
have a huge number of bits to read through before grep comes across a
newline character. What if grep had to read 200MB of data before coming
across a newline? It would “exhaust” itself (the input buffer fills up).

What if we could force-feed grep some newlines? In our example
analysis we are “grepping” for text. We are not concearned with non-text
characters at all. If we could take the input stream to grep and change the
non-text characters to newlines, grep would have no problem. Note that
changing the input stream to grep does not change the image itself. Also,
remember that we are still looking for a byte offset. Luckily, the character
sizes remain the same, and so the offset does not change as we feed newlines
into the stream (simply replacing one “character” with another).

Let’s say we want to take all of the control characters streaming into
grep from the disk image and change them to newlines. We can use the
translate command, tr, to accomplish this. Check out man tr for more
information about this powerful command:

tr ‘[:cntrl:]’ ‘\n’ < image.disk1 | grep -abif searchlist.txt > hits.txt

This command would read: “Translate all the characters contained in
the set of control characters ([:cntrl:]) to newlines (\n). Take the input to tr
from image.disk1 and pipe the output to grep, sending the results to hits.txt.
This effectivley changes the stream before it gets to grep.

This is only one of many possible problems you could come across.
My point here is that when issues such as these arise, you need to be familiar
enough with the tools Linux provides to be able to understand why such
errors might have been produced, and how you can get around them.
Remember, the shell tools and the GNU software that accompany a Linux
distribution are extrememly powerful, and are capable of tackling nearly any

 48

task. Where the standard shell fails, you might look at perl or python as
options. These subjects are outside of the scope of the current presentation,
but are introduced as fodder for further experimentation.

Preparing a disk for the suspect image
 One common practice in forensic disk analysis is to “wipe” a disk
prior to restoring a forensic image to it. This ensures that any data found on
the restored disk is from the image and not from “residual” data. That is,
data left behind from a previous case or image.

 We can use a special device that is used as a source of zeros. This
can be used to create empty files and wipe portions of disks. You can write
zeros to an entire disk using the following command:

 dd if=/dev/zero of=/dev/hdx bs=4096

 This starts at the beginning of the drive and writes zeros in every
sector in 4096 byte chunks. Specifying larger block sizes can speed the
writing process. Experiment with different block sizes and see what effect it
has on the writing speed (i.e. 64k). I’ve wiped 60GB disks in under an hour
and a half on a fast IDE controller with the proper drive parameters. Specific
drive parameters can be set using the hdparm command. Check hdparm’s
man page for available options. For instance, setting dma on a drive can
dramatically speed things up.

Another function we might find useful would be the ability to split
images up into usable chunks, either for archiving or for use in another
program. For examble, you might have a 10GB image that you want to split
into 640MB parts so they can be written to CD-R media. Or, if you use a
program such as Ilook Investigator (www.ilook.fsnet.co.uk/ilook/ilook.htm)
and need files no larger than 2GB (for a fat32 partition), you might want to
split the image into 2GB pieces. For this we use the split command.

 split normally works on lines of input (i.e. from a text file). But if we
use the –b option, we force split to treat the file as binary input and lines are
ignored. We can specify the size of the files we want along with the prefix
we want for the output files. The command looks like:

 49

 split –b XXm <file to be split> <prefix of output files>

 where XX is the size of the resulting files. For example, if we have a
6GB image called image.disk1.dd, we can split it into 2GB files using the
following command:

 split –b 2000m image.disk1.dd image.split.

 This would result in 3 files (2GB in size) each named with the prefix
“image.split.” as specified in the command, followed by “aa”, “ab”, “ac”,
and so on:

 image.split.aa
 image.split.ab
 image.split.ac

 The process can be reversed. If we want to reassemble the image
from the split parts (from CD-R, etc.), we can use the cat command and
redirect the output to a new file. Remember cat simpley streams the
specified files to standard output. If you redirect this output, the files are
assembled into one.

 cat image.split.aa image.split.ab image.split.ac > image.new
or
 cat image.split.a* > image.new

The sha1sum of image.new will match that of image.disk1.dd. Test the
above procedure on a floppy disk split into 360k parts.

 50

Conclusion
Note that examples presented to you here are very simple. There are

quicker ways of doing this, and more powerful ways. The steps above allow
you to use common Linux tools and utilities that are helpful to the beginner.
Once you become comfortable with Linux, you can extend the commands to
encompass many more options. Start learning how to automate these tasks
with shell scripts (shell scripts are your friend!). Eventually you can start
applying this to the ext2 filesystem used by Linux itself.

 51

VIII. Linux Support

Web sites to check for support:

Look here first: The Linux Documentation Project (LDP):

http://www.linuxdoc.org

The Linux How-to Index

http://metalab.unc.edu/mdw/HOWTO/HOWTO-INDEX.htm

RedHat Software
http://www.redhat.com

Linux.com -Sponsored by VA Linux

http://www.linux.com

The XFree86 (X Window) Homepage
http://www.xfree86.org

The Official page of the Linux Kernel

http://www.kernel.org

The Linux Information Headquarters

http://www.linuxhq.com

Slashdot. News for Nerds. A must read, at least twice a day...
http://www.slashdot.org

