Public Review for
Proactive Attacker Localization

in Wireless LAN
Chuan Han, Siyu Zhan, and Yaling Yang

The paper presents a technique to localize WLAN intruders. Traditionally, this problem has been solved by
assuming that multiple observers (usually Access Points) can simultaneously observe the intruder’s trans-
missions, and use time delays, angle of arrival, or signal strength information to localize the intruder. The
authors of this work consider a more capable intruder, who can, for example, beamform its transmissions
to be heard by one or few Access Points. The fewer the number of such observers, the less accurate can be
the localization process. The novelty of this work is a proactive technique that forces that intruder to expose
its transmissions to more Access Point observers. Essentially, the authors propose a coordinated system in
which the current Access Point serving an intruder observes the latter’s transmission characteristics for a
short while and then dissociates it. At that time, a different Access Point, located elsewhere but part of the
same WLAN system, accepts this intruder, provides access to its traffic for a little while, and then dissoci-
ates it again. As the process repeats, the intruder transmission characteristics get exposed to many observers
allowing localization. A core part of the paper is focused on determining the sequence of Access Points that
should serve the intruder for faster and more accurate localization.

The core idea is quite interesting and was appreciated by all reviewers. Clearly there are many interesting
next questions that need careful exploration. The system works on a somewhat long timescale over which
the intruder is assumed to be fairly stationary. So can this be adapted to mobile intruders? What happens
when the intruder is aware of the WLAN’s strategy of localization and tries to throw off the localization
process in some way? The work is simulation-based, and clearly an implementation of the system will
throw up some new challenges such a system will have to address. The localization system depends on a
somewhat high density of observers in the environment. What is the trade-off between observers and accu-
racy of localization in this manner?

Overall, a fairly interesting piece of work, that clearly warrants further exploration.
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ABSTRACT

This paper addresses the open problem of locating an at-
tacker that intentionally hides or falsifies its position using
advanced radio technologies. A novel attacker localization
mechanism, called Access Point Coordinated Localization
(APCL), is proposed for IEEE 802.11 networks. APCL ac-
tively forces the attacker to reveal its position information
by combining access point (AP) coordination with the tradi-
tional range-free localization. The optimal AP coordination
process is calculated by modeling it as a finite horizon dis-
crete Markov decision process, which is efficiently solved by
an approximation algorithm. The performance advantages
are verified through extensive simulations.

Categories and Subject Descriptors

C.2.1 [Computer Systems Organization]: COMPUTER-
COMMUNICATION NETWORKS—Network Architecture
and Design

General Terms
Security

Keywords

Secure localization, wireless LAN

1. INTRODUCTION

With the pervasive deployment of the IEEE 802.11 wire-
less local area networks (WLAN), it is quite easy for an
attacker to launch network attacks from a wireless termi-
nal to remote critical network infrastructures, such as na-
tional, financial, energy, transportation and military net-
work systems. Figure 1 shows a scenario where an attacker
uses a laptop to attack remote critical network infrastruc-
tures. Unlike in wired networks, where the attacker has to
be physically close to an Ethernet port to connect to the
network, an attacker in a wireless network is able to launch
an attack without a fixed position. In addition, an attacker
can also easily fake its MAC and IP addresses, invalidating
any attempt to identify the attacker’s identity through these
addresses. The highly mobile, anonymous and stealthy na-
ture of wireless communications makes the countermeasure
of wireless attack much more challenging than in wired net-
works. Therefore, to guarantee the security of these critical
infrastructures and completely eliminate the threat of a re-
mote wireless attacker, we must design a defense mechanism
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Figure 1: Wireless attacker’s threat to remote crit-
ical infrastructures

that can effectively locate the attacker in a wireless network
and make it liable for its offense.

The design of such a mechanism involves two stages. First,
an attacker is traced back to its home access point (home
AP), which is the AP the attacker currently connects to.
Existing attack traceback [1,2], traffic monitoring [3] and
device identification [4] techniques can successfully complete
this stage. Then, wireless localization schemes locate the
attacker so that law enforcement agencies can catch and pe-
nalize the attacker for its misdemeanor. This second stage,
unfortunately, is far from a well solved problem. Existing
localization methods [5-7], including both range-free and
range-based schemes, rely on passive observation of the at-
tacker’s signal features, such as its connectivity with neigh-
boring nodes, received signal strength (RSS), time of arrival
(TOA), angle of arrival (AOA), and etc. An intelligent at-
tacker equipped with advanced radio technologies, like di-
rectional antennas and software defined radios (SDRs), can
change its beam direction and radio parameters to distort
these signal features so that it can falsify or hide its position
with great ease and anonymity. In the presence of such an
intelligent attacker, the best that existing secure localization
schemes [7,8] can do is only to verify that an attacker’s po-
sition claim is false. None of the existing efforts can reveal
the true position of such an attacker.

To address this critical challenge, in this paper, we pro-
pose a novel Access Point Coordinated Localization (APCL)
scheme, which is the first method that can locate an at-
tacker equipped with directional antennas and SDRs. APCL
coordinates APs around the attacker to force the attacker
to reveal undistorted signal features unintentionally. Tradi-
tional localization techniques can then be used to capture
these features and locate the attacker. To ensure optimal
localization of the attacker, the AP coordination process is
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modeled as a finite horizon discrete Markov decision process
(MDP), and an approximation algorithm is proposed to ef-
ficiently find the quasi-optimal coordination process. APCL
only imposes a negligible query load on APs, and does not
require any realtime computation and special hardware.

The rest of this paper is organized as follows. The threat
model is shown in Section 2. APCL is described in Section 3,
and is modeled as a finite horizon discrete MDP in Section 4.
An efficient approximation algorithm is proposed in Section
5. The simulation results are shown in Section 6. Finally,
Section 7 concludes the whole paper.

2. THREAT MODEL

Using directional antennas and SDRs, an attacker can eas-
ily fake a false position by fooling traditional localization
schemes. A few such scenarios are listed as follows:

e In traditional TOA-based or RSS-based localization sys-
tems, an AP computes its distance to the attacker based
on round trip time or the received signal strength from the
attacker. If the attacker intentionally delays its transmis-
sion or lowers its transmission power to the AP, distance
estimation becomes overly large, resulting in a false loca-
tion estimation as shown in Figure 2 (a).

e In traditional AOA-based localization systems, the arrival
angles of the attacker’s signal to multiple APs are used to
estimate the attacker’s position. If the attacker intention-
ally beamforms its antenna beam to a strong reflector.
AOA-based localization schemes locate the attacker to its
mirrored image as shown in Figure 2 (b).

e In traditional connectivity-based localization systems, the
connectivity information of the attacker with multiple APs
is used to estimate the attacker’s position. For example,
in [9], the centroid of APs which can receive the attacker’s
signal is used as the position estimation. If the attacker
uses a directional antenna, it can intentionally distorts
the number and the distribution of APs that can receive
its signal, which results in a false position estimation as
shown in Figure 2 (c).

As the above examples show, an intelligent attacker equipped

with directional antennas and SDRs can easily fool tradi-
tional localization schemes that are based on passive signal
feature measurements. In the next Section, we present our
APCL scheme to locate such an intelligent attacker.

3. APCL MODEL

APCL is based on range-free localization schemes. We
select range-free localization schemes because they can be
directly implemented over off-the-shelf Wi-Fi devices and
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require no modification to the existing IEEE 802.11 stan-
dard [10]. APCL assumes that the only reliable measure-
ment at an AP is the connectivity between the attacker and
the AP. Such a low requirement on the hardware devices
ensures the widest applicability of APCL since any Wi-Fi
device can provide such measurement. In addition, APCL
can locate the attacker even if it is intelligent enough that
it can control its beam direction and transmission power to
only allow one AP to receive its signal. This is the worst
case for the localization purpose. In the remainder of this
section, we discuss the design of APCL.

3.1 Basic assumptions

The design of APCL is based on the following assump-
tions. Multiple APs can be coordinated to locate the at-
tacker. Using existing network attack traceback, traffic mon-
itoring, and wireless device identification techniques, the at-
tacker has been successfully identified and traced down to
its home AP before APCL is started to locate the attacker.
In addition, we assume that there is only one attacker in
the coverage region of its home AP and the attacker is rel-
atively stationary during the localization process. In our
future work, we will further study the cases of locating mul-
tiple attackers and mobile attackers. Each AP is assumed
to have correct knowledge about its position. We further
assume that we can get a rough estimation about the maxi-
mum possible communication range between the AP and the
attacker. This assumption is based on the fact that the dura-
tion of ACK timeout in the IEEE 802.11 standard [10] limits
the maximum distance between an AP and its client to be
around 150 m. This limit cannot be changed by larger trans-
mission power or a more sensitive antenna. Instead, long
range communications beyond 150 m have to modify the
value of ACK timeout in both the AP and the attacker [11],
which is impossible since the attacker cannot modify AP’s
configurations.

3.2 Mechanism description

Based on the assumptions in Section 3.1, APCL works
as follows. The initial estimation of the attacker’s position
is the coverage region of its home AP, which is the region
determined by the maximum communication range between
an AP and an attacker. Since the initial estimation region
may be too large to locate the attacker, APCL disassociates
the attacker from its home AP. This is done by sending a
disassociation frame to the attacker to terminate this indi-
vidual connection. This operation is only targeted at the
attacker and does not interfere existing legitimate WLAN
users. A specified Reason Code is filled in the Reason Code
field of the disassociation frame. Several legitimate reasons
can be used to disassociate the attacker [10], e.g., bad link
quality, overcrowded wireless access, etc. To continue its
attack, the attacker has to reconnect to one of its neigh-
boring APs. Once the reconnection is established and the
attacker starts to send its attacking traffic through this new
home AP again, this new home AP can be quickly identified
through attack traffic traceback, traffic analysis or wireless
device identification techniques. After successful identifica-
tion, APCL narrows the position estimation region down
to the intersection of the previously connected and the new
home APs’ coverage regions. This process continues until
there are no neighboring APs of the attacker that can help
APCL to narrow the position estimation.
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In the above localization process, if there is no control
over the possible APs which the attacker can reconnect to
after its disassociation, the attacker may pick the AP which
cannot contribute to the narrow down process or the AP
which contributes little to the process. For instance, the at-
tacker can pick the AP whose coverage region encompasses
the current estimation region. In this case, the reconnection
of the attacker does not narrow down the attacker. To guar-
antee effective narrow down of the estimation region in each
disassociation step, APCL has to control the possible APs
which the attacker may reconnect to. We define that a set of
APs are activated for the attacker, when they are selected to
be available to the attacker for communication. This means
that in the passive scanning mode [10], only those activated
APs reply Association Response frames to Association Re-
quest frames from the attacker, and in the active scanning
mode [10], only activated APs reply Probe Response frames
to Probe Request frames from the attacker. It is important
to note that the selected activation of APs is targeted only to
the attacker. For legitimate users, all APs are available for
communications and reply to Association Request frames or
Probe Request frames from the legitimate users. Therefore,
the AP activation process does not affect legitimate users’
operations. As disassociation and association operations are
common phenomena in normal WLAN environments, it is
difficult for the attacker to detect the existence of APCL.

To illustrate APCL, a simple example is shown in Figure
3. Suppose there are five APs, APy, APy, AP2, AP3 and
APy4. In Figure 3, let the black dot denote the attacker, the
empty dots be the APs, the circles be the coverage regions of
the APs, and the activated APs’ coverage regions are marked
as solid-line circles. Assume, firstly, the attacker initially
connects to APy, and the attacker is located in the coverage
region of APy as shown in the shadowed region in Figure 3
(a). Next, APCL activates AP; and AP», and disassociates
the attacker from APq as shown in Figure 3 (b). To continue
its attack, the attacker reconnects to AP, and then APCL
narrows down the attacker to the intersection of coverage
regions of APy and AP as shown in Figure 3 (c). By the
similar process, APCL activates AP2, and disassociates the
attacker from AP; as shown in Figure 3 (d). The attacker
connects to AP2, and APCL narrows down the attacker to
the intersection of coverage regions of APy, AP; and AP,
as shown in Figure 3 (e).

In the APCL localization process, it is possible the at-
tacker cannot find an activated AP within its communica-
tion range. In this case, the attacker is termed as alerted
and the process terminates. The attacker’s position is esti-
mated within the previous estimated region but outside of
the union of the activated AP coverage regions. As shown
in Figure 3 (f), before disassociating the attacker from APy,
suppose APCL activates AP3. Then, the attacker cannot
find any activated APs within its communication range, and
the estimation region of the attacker’s position is the shad-
owed region in Figure 3 (f).

APCL is initiated and controlled by a network manage-
ment server as shown in Figure 1, which is in command of the
whole process of tracing back and locating the attacker. The
flow chart of APCL is shown in Figure 4. The effectiveness
of APCL, to some extent, relies on the existence of multi-
ple APs around the attacker. Given the wide deployment
of WLAN;, this is very likely to be the case. Figure 5 shows
a sample measurement of the number of APs at 13 ran-
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Figure 3: APCL example

domly picked locations in Virginia Tech campus buildings.
In the measurement, a normal omnidirectional antenna is
used. The fact that more than 12 APs are present at all the
13 locations validates the assumptions of APCL.

4. OPTIMAL APACTIVATION SEQUENCE

In each activation and disassociation step, APCL con-
sumes certain network resources. To minimize the network
resource consumption, it is desirable to locate the attacker
within the least number of steps. Moreover, to minimize
the final localization error, APCL also needs to find the op-
timal AP coordination process. Therefore, there arises an
interesting problem of identifying the optimal AP activation
sequence.

4.1 MDP model for the AP activation process

The optimal AP activation sequence problem can be mod-
eled as a finite horizon discrete Markov decision process
(MDP) based on the following two reasons. Firstly, APCL
only has a partial control over the whole process. While it
is possible to control which APs to activate in one step, it is
impossible to control which activated AP the attacker actu-
ally reconnects to. Secondly, the activation process has the
Markov property, i.e., given any current state, the transition
to the next state is only dependent on the current estimation
region and is independent of the previous localization pro-
cess. Hence, MDP is the appropriate model for computing
the optimal AP activation sequence.

4.1.1 Definition

The MDP model for the APCL activation process is de-
fined as a tuple

[57A7A(s)7Pa(s7s')7ra(s)] , (1)

where S is the state space, A is the action space, A(s) is
the action space for state s € S, P,(s,s’) is the transition
probability of a given action a € A(s) from state s to state
s', Tq(s) is the expected immediate reward received after
taking an action a € A(s) at state s.

Each state s in S corresponds to a possible estimated re-
gion of the attacker. To simplify our reference to each state,
without loss of generality, we index the first home AP of the
attacker as 0, and assume that AP 0 has N neighboring APs,
which are indexed as 1,2, ..., N. Since each estimated region
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Figure 4: APCL flow chart

is an intersection of multiple AP coverage regions, we denote
a state in S as s, where the subscript = {x1,z2,..., 2k}
represents that the estimated region in this state is the in-
tersection of the coverage regions of APs x1,z2,. .., and xk.
The only exception in the state space notation is the state
that corresponds to situations where the attacker is alerted.
This happens when the attacker cannot find any activated
APs to reconnect to within its communication range after
it is disassociated from its previous home AP. This state is
defined as an alert state Sgiert.- A state s whose action space
A(s) = 0 is called a leaf state Siear. A leaf state cannot
transit to any other states.

Each action a in A corresponds to the set of APs activated
by APCL in one step. Given the current estimated region
of the attacker as s, note that APCL can only narrow down
the estimated region if the attacker connects to a new ac-
tivated AP whose coverage region intersects with but does
not encompass s. Hence, by denoting the set of all such APs
by I(s), s’s action space A(s) is 2/¢*) — ), where 2/¢*) is the
power set of I(s) and () is the empty set.

A state transition happens when APCL takes an action
by activating a set of APs and the attacker subsequently
chooses a new activated AP to connect to. A transition from
state s, to s, is possible under an action a if the following
three conditions are satisfied.

e x C yand |y — x| = 1. This is because when the attacker
connects to a new home AP, APCL computes the esti-
mated region as the intersection of coverage regions of all
the previous home APs and this new home AP.

e (y—x) € a. This is because the attacker can only connect
to home APs which are activated in action a.

® 5S¢ # Salert and Sy # Sjeay. This is because the localiza-
tion process cannot continue when there are no APs to
activate or the attacker is alerted.

4.1.2 Transition probability calculation

Given states sz, sy and an action a, if the transition from
Sz to sy is possible, APCL calculates the transition proba-
bility based on the following assumptions. At state s,, we
assume the probability density of the attacker’s position is
uniform over the estimated region of state s, and the at-
tacker connects to any activated AP in its communication
range with equal opportunity. Note that, these assump-
tions are derived by assuming that we have no knowledge
of the position distribution and reconnection preference of
the attacker, which is the worst case. Once we have some
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knowledge of the attacker’s position distribution and recon-
nection preference, we can get a better and faster estimation
of the attacker’s position. With these assumptions, it can
be proved that the state transition probability from state s,
to s, under action a is

_1ylvl=1
%Area(swv)
v (20 —0) Y
(y—w)ev

Pa Sz, S = 5 2
( ) Area(sz) 2)
where Area(s) represents the area of state s’s estimated re-
gion, and 2% is the power set of the set a. Correspondingly,
the probability that the attacker is alerted due to its inabil-

ity to connect to any activated AP is

Pa(8w78ale'rt) =1- Z P(L(Sw7 SLU{Z})

i€a

®3)

4.1.3 Action reward function calculation

The reward for transition from state s, to state s, can be
represented by r(sz, sy) = Area(s,) — Area(sy) — C, where
Area(sy) — Area(sy) represents the enhanced accuracy of
position estimation, and constant cost C' is used to reflect
the fact that the more transitions, the longer the localization
process and hence the higher risk that the attacker may
move away before APCL finalizes the process. Hence, the
action reward function in (1) becomes

>

(y—m)€a, or sy=sqgiert

ra(Sz) = Po(sz, sy)r(8z, sy).  (4)

Since leaf states and alert states cannot transit to any other
states, the expected aggregated rewards for these two types
of states are defined as

(®)

where Cyere is the constant cost for alerting the attacker.

Ta(sleaf) = 07 Ta (Sale'r‘t) - _Cale'r‘t:

4.2 Optimization objective design
The optimization objective is defined as follows,

N
mgxz VT sy (5(1)), (6)
t=1

where 7 is the MDP policy that is essentially a sequence of
actions, 7(s(t)) is the action taken at state s(t) according
to policy w, N is the horizon length that is the length of

the MDP policy, 0 < v < 1 is the discounting factor for
the future reward, and it captures the fact that the future
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reward is less important due to the chance that the attacker
may move away in the future. Correspondingly, the optimal
policy that achieves the optimal objective is,

N
" = arg max Z ’ytflrﬂ(s(t)) (s(t)).

t=1

(7)

For state s(¢) where future transition is possible, by (4), the
expected aggregated reward is defined as follows

> [Prscy) (s(t), s(t + 1))

s(t+1)—s(t)en(s(t)),
or s(t+1)=sqiert

xr(s(t), s(t+ 1)),

Tr(se) (s(t) =
(8)

where s(t+1) —s(t) is the AP the attacker connects to given
action 7(s(t)). The AP activation process of APCL, hence,
can be depicted in the state transition diagram in Figure 6.
At time ¢, the state is s(t) and APCL activates APs in a(t)
based on 7* calculated by (7). Then, the attacker selects its
new AP at time ¢ + 1 and the localization process transits
to a new state s(t + 1). This process continues until APCL
reaches a leaf state or an alert state.

4.3 Optimal decision calculation

Given the MDP model in Section 4.1, it is natural to solve
the optimization problem by the traditional backward in-
duction method for MDPs. Given any state s, the optimal
action, i.e., the optimal set of APs to activate is as follows

{ralse) Y Palsa,sy)V(sy)},

(y—z)€a,

Or Sy=Salert

7 (sy) = arg max
a€A(sgz

)
where V(s5), which represents the maximum expected ag-
gregated reward for state s, is

>

(y—z)En*(s2),
Or Sy=Salert

V(sa) & rre(s,) (s2) +7 Pree(s5) (82, 59) V (5y).

(10)
With (9) and (10), after network deployment, the optimal
AP activation decision and the position estimate for each
possible state can be precomputed. By storing the precom-
puted optimal decisions and position estimates to a database,
APCL can easily decide which APs to activate based on the
current estimated region of the attacker.

5. EFFICIENT IMPLEMENTATION

Although the optimal activation decision can be precom-
puted using the model in the previous section, its computa-
tion complexity may still be very high and undesirable. This
is especially true if APs are densely deployed, which creates
a large action space in the MDP. To reduce the computation
overhead, this section develops an efficient approximation
algorithm to the MDP.

The design of the algorithm is based on the observation
that the MDP algorithm has two objectives: minimizing the
estimation error and minimizing the total number of action
steps. To identify the condition that minimizes the estima-
tion error, we define a region that cannot be further divided
by the boundaries of APs’ coverage regions as an unsplit-
table region. If a region is the intersection of multiple APs’
coverage regions, this region is defined as a convez region.
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Otherwise, it is a non-conver region. Clearly, an attacker
can be either in a convex unsplittable region or in a non-
convex unsplittable region. If the attacker is in a convex
unsplittable region, APCL can eventually narrow the at-
tacker down to this convex unsplittable region through the
activation process. The estimation error, hence, is the de-
termined by the size of the convex unsplittable region. If
the attacker is in a non-convex unsplittable region, then in
the activation process, APCL will eventually reach an alert
state. In this case, the minimum estimation error is achieved
when APCL ends in an alert state whose parent state cor-
responds to the minimum size convex region encompassing
the non-convex unsplittable region. Based on these obser-
vations, the following Proposition can be proved.

PROPOSITION 1. Given AP positions and coverage regions,
the minimum localization error is determined by the shape,
size and distribution of the unsplittable regions. A policy
achieves the minimum localization error if it satisfies the
following two conditions: 1) if the attacker is in a convex
unsplittable region, no alerts happen, 2) or if the attacker is
in a non-convex unsplittable region, the only alert happens
when the current state corresponds to a minimum size con-
vex region encompassing this non-convex unsplittable region.

One simple method to guarantee the above two conditions
is to keep the alert probability minimum at each step. Note
that the alert probability in (3) can also be calculated as
Po(8z, Satert) = An(a, sz)/Area(ss), where Ay(a,sz) is the
area of the part of s, that is not covered by any AP in
action a. Hence, if the action a activates all the APs that
intersect but do not encompass s;, the alert probability is
minimized. If we remove one or more APs from a without
affecting Ay (a, sz), the alert probability remains unchanged
and minimum.

Based on these observations, we design a three-step ap-
proximation algorithm. This algorithm first guarantees that
the estimation error is minimized and then tries to minimize
the total number of steps. The approximation algorithm
starts from the AP set agp whose APs intersect with but do
not encompass the current estimation region s,. It itera-
tively removes AP j from a;,7 = 0,1, ..., generating a;41.
The selected AP j satisfies the following three conditions:

i .7 eJ £ {.7 : ] € ai7A7l(a’i - {.7}7896) = A7l(a0759€)}7 i‘e'v
the removal does not change the area of the part in s,
that is not covered by APs in ao;

° (J?k) € [J/7K] £ {(J?k) .7 € Jvk S aivk 7& jvszu{k} c
qu{j}}7 i.e., the intersection region between s, and AP
j encompasses the intersection region between s, and an-
other AP k € a;;

e jcJ’ 2arg max

(4,k)€E[J K]
tion region s,ujuk is the largest among all the possible
(4, k) pairs in [J', K].

{Area(szujuk)}, i.e., the intersec-

The removal process stops when there is no AP satisfying
the above conditions. The AP set consisting of the remain-
ing APs is the quasi-optimal action set. In the above ap-
proximation algorithm, the first condition guarantees that
the final estimation error does not degrade since the local-
ization process will not terminate prematurely. The com-
bination of the second and the third condition is a greedy
method that tries to minimize the number of action steps
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Figure 7: APCL performance

by eliminating APs that can potentially introduce unneces-
sarily more steps.

6. PERFORMANCE SIMULATION

We evaluate the performance of APCL in the random
topology, where APs are uniformly distributed. The net-
work density p is defined as the average number of APs per
km?. In our simulation, the discounting factor in (6) of
APCL is set as v = 0.9, the action cost C' equals 0.2r%, and
r = 150 m is the maximum range the attacker can commu-
nicate to an AP, which is determined by the ACK timeout
configuration at the AP. The alert cost is Coujert = 10C.
The position estimation of APCL is treated as the centroid
of the estimated region. The localization performance is
measured in error ratio e/r, where the localization error e
is defined as the distance between the true position and the
estimated position. The position estimation errors are aver-
aged over 10000 possible attacker positions within the cov-
erage region of the first home AP of the attacker. For each
density value, the performance is averaged over 50 possible
AP topologies. The APCL performance is compared with
the traditional centroid method [9], which locates the target
to the centroid of the neighboring APs.

Figure 7 (a) shows the error ratio for a low AP density that
ranges from 10 APs per km? to 50 APs per km?. This cor-
responds to 0.7 APs to 3.5 APs in a normal wireless card’s
communication range, which is far less than our measure-
ment of AP densities in Virginia Tech campus (See Figure
5), demonstrating that there are more than enough APs to
support APCL in current Wi-Fi networks. The MDP per-
formance overlaps with the approximation algorithm per-
formance, validating the effectiveness of the approximation
algorithm. The APCL greatly outperforms the traditional
centroid method. While the performance of the traditional
method remains unchanged when the network density in-
creases, the performance of APCL improves dramatically. It
is because APCL gets a more accurate position estimation
by luring the attacker to change its beam direction. When
the network density increases, APCL uses more neighbor-
ing APs to locate the attacker and achieves more accurate
localization. Figure 7 (b) shows the average number of ac-
tions under the low AP density. Again, the MDP perfor-
mance overlaps with the approximation algorithm perfor-
mance. The average number of actions increases when the
network density increases. This is because there are more
neighboring APs to locate the attacker, when the network
density increases. This results in more actions to finally lo-
cate the attacker. This overhead of localization, however, is
not significant since the dissociation and reassociation pro-
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cesses are fast operations that take around one second to
complete [12]. Hence, the overhead of APCL is only several
seconds, which is reasonable for the localization purpose.
In the case of high density, MDP cannot solve the op-
timization problem because of the great computation over-
head, but our approximation algorithm can successfully solve
it. The error ratio performance with respect to the network
density is shown in Figure 7 (c). As shown in Figure 7 (c),
APCL outperforms the traditional centroid method. The er-
ror ratio decreases when the network density increases. The
average number of actions with respect to the network den-
sity is shown in Figure 7 (d). The average number of actions
increases when the network density increases. The average
localization time is still in the range of several seconds.

7. CONCLUSIONSAND FUTURE WORKS

Existing research of wireless localization focuses on ei-
ther robust legitimate node localization or position claim
verification. No efforts have been dedicated to locate the
attacker, which may hide or falsify its position using ad-
vanced radio technologies such as directional antennas and
SDRs. This paper addresses this threat in the context of the
IEEE 802.11 WLAN by proposing a range-free localization
scheme, termed APCL. In the future, we will extend APCL
to track mobile attackers and locate multiple attackers si-
multaneously.
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