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Abstract. Botnets, in particular the Storm botnet, have been garner-
ing much attention as vehicles for Internet crime. Storm uses a modified
version of Overnet, a structured peer-to-peer (P2P) overlay network pro-
tocol, to build its command and control (C&C) infrastructure. In this
study, we use simulation to determine whether there are any significant
advantages or disadvantages to employing structured P2P overlay net-
works for botnet C&C, in comparison to using unstructured P2P net-
works or other complex network models. First, we identify some key
measures to assess the C&C performance of such infrastructures, and
employ these measures to evaluate Overnet, Gnutella (a popular, un-
structured P2P overlay network), the Erdős-Rényi random graph model
and the Barabási-Albert scale-free network model. Further, we consider
the three following disinfection strategies: a) a random strategy that,
with effort, can remove randomly selected bots and uses no knowledge
of the C&C infrastructure, b) a tree-like strategy where local informa-
tion obtained from a disinfected bot (e.g. its peer list) is used to more
precisely disinfect new machines, and c) a global strategy, where global
information such as the degree of connectivity of bots within the C&C in-
frastructure, is used to target bots whose disinfection will have maximum
impact. Our study reveals that while Overnet is less robust to random
node failures or disinfections than the other infrastructures modelled,
it outperforms them in terms of resilience against the targeted disinfec-
tion strategies introduced above. In that sense, Storm designers seem to
have made a prudent choice! This work underlines the need to better
understand how P2P networks are used, and can be used, within the
botnet context, with this domain being quite distinct from their more
commonplace usages.

1 Introduction

Botnets have emerged as one of the most pressing security issues facing Internet
users [1–3]. In early 2007, researchers estimated that 11 percent of the more than
650 million computers attached to the Internet were conscripted as bots [3].
Members of the security research community have tracked botnets with sizes
ranging from several hundred to 350 thousand federated hosts [1, 2, 4, 5].



Botnets are big business; whether they be used for sending spam [6], or as
tools for profit-motivated on-line crime [7]. As computer users become more
aware of security issues, and vulnerabilities are more quickly fixed via automatic
updates, more sophisticated social engineering techniques are being used to in-
stall malicious codes on victims’ machines. One of the commonly used techniques
for planting bot codes on machines, involves spam emails with enticing subjects
(such as “Britney Did it Again”) with links to Web sites containing malicious
codes. Electronic greeting cards and “free” downloads have also been used to
trick users into clicking on links containing exploit codes which are subsequently
installed on the unsuspecting victims’ machines, thus transforming them into
bots [8].

Once infected, the bots must be controlled by the external malicious agents.
This can be achieved by a command and control (C&C) infrastructure, ideally
allowing the distribution of any command to any bot. This infrastructure has
three competing goals: a) to be as efficient as possible, by ensuring the rapid
propagation of commands, b) to be as stealthy as possible, by minimising the
risk that the botnet’s activities will be observed, and c) to be as resilient as
possible, i.e. to minimise the impact of node disinfection or node failure. In this
work, we refer to robustness as the network’s capacity to retain its capabilities in
light of random failures or uninformed disinfection strategies, while we use the
term resilience to refer to a network’s capacity to retain its capabilities when
subject to targeted and informed disinfection strategies.

Prior to late 2006, most observed botnets used Internet Relay Chat (IRC) [9]
as a communication protocol for C&C [10]. Awareness of this fact spurred re-
searchers to develop botnet detection schemes which are based on analysis of
IRC traffic [11–15]. This, in turn, likely pushed the development of more sophis-
ticated botnets, such as Storm and Nugache [16] and Peacomm [17], towards the
utilisation of P2P networks for their C&C infrastructures. In response to this
trend, researchers [4, 18] have proposed various models of botnets that are based
on self-organised complex networks or P2P infrastructures, as possibilities for
advanced botnets C&C infrastructures.

The Storm botnet is one of the largest and better known recent botnets.
It adapted the Overnet P2P file-sharing application [19] —itself based on the
Kademlia distributed hash table algorithm [20]— and utilises it for its C&C in-
frastructure [21]. Storm has received much scrutiny in the electronic media [1–3],
and in the anti-virus research community [8, 16, 21]. Such attention has spurred
the Storm operators to episodically evolve the details of how Storm operates, for
example, by encrypting the C&C traffic [22]. The level of sophistication Storm
exhibits —for instance, by using Fast Flux service networks [23] for DNS ser-
vices, and launching distributed denial-of-service attacks on computers that are
used to investigate its bots [24]— indicates that its operators are quite savvy.
Consequently, it is conceivable that they are likely to continue to enhance their
botnets to make them less detectable and more resilient to disinfection, whether
this be through their own discoveries or through leveraging relevant research
results available within the literature.



A botnet can be seen as a complex network, with hundred of thousands
of nodes, each representing a bot. While direct communications between any
two bots are possible using the Internet Protocol (IP), in practice meaningful
communications between bots can only happen if one of them knows about the
fact that the other computer is indeed a bot and what parameters (e.g. open
listening sockets, cryptographic keys) are needed to contact it. Thus, edges of
this (directed) graph correspond to communication links where the source node
knows of and how to contact the destination node.

These freely self-organised networks can be described by different theoreti-
cal models: Erdős-Rényi random graphs, Barabási-Albert scale-free graphs, or
Watts-Strogatz small-world network models. The efficiency of their underlying
C&C infrastructures depends, at least in part, on the intrinsic properties of
the underlying graphs. It is well established in the research literature that the
Erdős-Rényi random graph model [25] shows more resilience to targeted re-
moval of nodes than the other well-known, theoretical network models, i.e., the
Barabási-Albert scale-free [26] and the Watts-Strogatz [27] small-world networks,
whilst keeping the same underlying properties of the graph (i.e. size and con-
nectivity). It is intuitively clear that removing the highly connected nodes from
scale-free graphs may easily impact the connectivity of those graphs. In light of
these results, it is natural to ask what advantage, if any, a botnet which employs
the theoretical Erdős-Rényi random graph or Barabási-Albert scale-free network
model would have, compared to botnets utilising structured or unstructured P2P
networks, such as Gnutella or Overnet. This question is doubly relevant. First,
because in the research on botnet C&C performance to date, little attention has
been paid to the actual methods employed by current botnets to build these C&C
infrastructures. Second, because if the real-world use of these theoretical models
could yield better C&C performance, it would provide us with an indication of
likely future evolution in the botnet arms race.

Our findings and the main contributions of our work can be summarised as
follows:

1. We introduce and discuss three key measures for assessing the performance
of botnets command and control; two of these measures, to the best of our
knowledge, have not been previously explored in the context of botnets.

2. We introduce and consider the effects of three distinct disinfection strategies,
on a structured (Overnet) and an unstructured (Gnutella) P2P overlay net-
works, and on the Erdős-Rényi random graph and Barabási-Albert scale-free
network models.

3. Most significantly, we show how botnets using a structured P2P networks
(Overnet) as their C&C infrastructures can achieve even more resistance
to targeted attacks than that achievable through the Erdős-Rényi random
graph model, already known to show good resilience.

4. Finally, our results indicate that there is an apparent general trade-off be-
tween the efficiency of the C&C infrastructure to distribute commands, and
its resilience to disinfection.



The rest of the paper is organised as follows. Section 2 lists the related
works and provides an outline of how our work differs from previous works.
Section 3 contains background information about four network architectures
we investigated as possible infrastructures for botnets C & C infrastructures.
Section 4 contains information relating to the simulation setup, a discussion of
the developed measures, and some of the initial assessment results. In Section 5,
we describe the disinfection strategies we considered, and present the disinfection
analysis results. In the final section, we discuss our findings, summarise our
contributions and suggest some directions for future work.

2 Related work

Theoretical models of complex networks have received significant attention in
the Physics literature. This research has looked carefully at the properties of
these graphs, as nodes are removed randomly or in a deliberate and targeted
fashion.

Albert, Jeong and Barabási [28] investigated the error and attack tolerance
of complex network using simulation. They studied the change in diameter of
Erdős-Rényi (ER) random graph [25] and Barabási-Albert (BA) scale-free net-
work models [26] when small fraction of nodes were removed. Their results indi-
cated that BA model shows high degree of tolerance against random error (high
robustness), but that it is more susceptible to be disconnected than ER model
when the most connected nodes are targeted (low resilience).

Crucitti, Lattora, Marchiori and Rapisarda [29] conducted similar studies
which compared the resilience of ER and BA networks against targeted attacks.
Instead of using changes in diameter as a measurement of robustness and re-
silience, the authors used the global efficiency, which is defined as the average of
the efficiency εij = 1/tij over all couple of nodes; where tij is the time it takes to
send a unit packet of information through the fastest path. Their studies showed
that ER random graphs exhibit similar tolerance with respect to error and tar-
geted attacks, while the BA scale-free network model is robust to random errors,
but vulnerable to targeted attacks.

Holme, Kim, Yoon and Han [30] studied the response of complex networks
subjected to attacks on nodes and edges. They investigated the changes in av-
erage shortest path length and the size of the giant component of ER, BA and
Watts-Strogatz (WS) [27] graphs when a fraction of the nodes are removed. In
the simulation experiments, nodes of the graphs were selected and removed in
decreasing order of their incidence degree and their betweenness centrality mea-
sure. This latter value captures the notion of whether a given node is on most
of the shortest paths between any pairs of nodes in the graph. The authors con-
cluded from their study that the ER model, because of its lack of structural bias,
is the most resilient network of the set they tested.

The theoretical models of complex networks have also been considered in
the botnet literature. Cooke, Jahanian and McPherson [10] investigated possi-
ble advanced botnet communication topologies. They outlined three topologies



(a centralised structure, a generic P2P model and a simplistic random model)
without comparing their effectiveness, and suggested possible detection meth-
ods based on the correlation of events gathered by distributed sensors. To their
credit, the authors forecasted the appearance of botnets like Storm using P2P
networks.

Wang, Sparks and Zou [18] presented the design of an advanced hybrid P2P
botnet and provided analysis and simulation results which attest to the resilience
of their botnet architecture. Their theoretical P2P protocol is very simple com-
pared to Kademlia, used by Overnet, and gives graphs with weak structures.
The authors look essentially at only one measure to evaluate the performance of
their approach: the connectivity of the resulting graph after targeted disinfec-
tion. Furthermore, they did not compare their protocol with any other complex
network model.

Dagon, Gu, Lee and Lee [4] identified three measures to measure the per-
formance of the C&C infrastructure. First is the size of the giant component of
the graph, which represents the size of the reachable (and thus usable) portion
of the botnet. Then they consider the graph diameter, which measures the ef-
ficiency of the botnet in terms of rapidity to reach all nodes in the connected
component. The last measure is the graph redundancy, measuring the probabil-
ity that, if two edges of the graph share a node, they are part of a triangle, and
is related to the robustness of the botnet. The authors considered the following
four network models: Erdös-Rényi random graphs, Barabási-Albert scale-free
networks, Watts-Strogatz small world networks. They also consider P2P mod-
els, but approximate them with the theoretical models: structured P2P models
approximated as ER graphs, and unstructured P2P models approximated as BA
networks (we describe more precisely this distinction in Section 3).

Our work can be differentiated from the works listed above, as follows:

– None of this previous work investigated the performance differences between
structured and unstructured P2P networks, and that between P2P networks
and theoretical complex network models.

– Two of the three measures that we identified for assessing the performance
of botnets (i.e. reachability from a given node and the distribution of the
shortest paths) have not been explored in any of the previous works.

– We describe and analyse a disinfection strategy (tree-like disinfection), which
has not been considered in previous work.

3 Background

In this section, we give a brief overview of the four network models we studied
as C&C infrastructures for botnets. We commence with P2P overlay networks.

P2P overlay networks are generally classified into two categories: structured
and unstructured networks. The nodes in a structured P2P network connect
to at most k peers, where k is a fixed parameter; and there are stipulations
regarding the identities of nodes to which a given node can connect. For the
case of Overnet, a node can only connect to nodes which have IDs that are less



than a certain distance (see Section 3.1 below). Whereas, for unstructured P2P

networks, there is no fixed limit to the number of peers that a node may connect
to and, more importantly, there is no stipulation regarding the identity of which
nodes a given node is allowed connections with. Examples of structured P2P
networks are Overnet [19] and Chord [31]. Gnutella [32] and Freenet [33] are
examples of unstructured P2P networks. We choose Overnet and Gnutella for
our simulation studies because they are the more real-world popular examples of
their respective network types. Brief overviews of both are provided below along
with brief descriptions of Erdős-Rényi random graphs and Barabási-Albert scale-
free models of complex networks.

3.1 Brief overview of Overnet

Overnet is a popular file sharing overlay network which implements a distributed
hash table (DHT) algorithm called Kademlia [20]. Each node participating in
an Overnet network generates a 128-bit ID when it first joins the network. The
ID is transmitted with every message the node sends. This permits recipients
of messages to identify the sender’s existence as necessary. Each node in an
Overnet network stores contact information about each other in order to route
query messages. Every node keeps a separate list of 〈IP address, UDP port, ID〉
triplets for nodes of distance 2i and 2i+1 from itself, for each 0 < i < 128. The
distance d(x, y) between two IDs x and y is defined as the bitwise exclusive or
(XOR) of x and y interpreted as an integer, i.e., d(x, y) = x⊕y. These peer lists
are referred to as k-buckets and they are kept sorted by time last seen, ordered
by least-recently seen at the head and the most recently-seen at the tail.

A node n wishing to join an Overnet network must have contact with some
node m already participating in the network. The new node n inserts its contact
m into the appropriate k-bucket then broadcasts node lookup query messages to
search for the k closest nodes to its ID through the node m. The new node n can
then populate its k-buckets based on messages it receives. In the process, seeing
the broadcast messages from n, other nodes can also refresh their k-buckets and
insert n in their k-buckets as necessary.

3.2 Brief overview of Gnutella

Gnutella is a popular unstructured file sharing overlay network. In order to join
a Gnutella network, a node n connects to a node m that is already connected
to the network. Once attached to the network, n broadcasts a PING message
through m to announce its presence. When a node receives a PING message, it
forwards it to its neighbours and sends a PONG message to the sender of the
PING message along the reverse path of the PING message. The transmission of
these messages allows nodes to learn about each other. A new node n typically
connects to the first k nodes it hears from, where k is a configurable parameter.



3.3 Brief description of Erdős-Rényi and Barabási-Albert models

Erdős-Rényi (ER) random graph model: An ER graph [25] (also described
at length in [34]) is a random graph consisting of N nodes connected by edges.
Each of the

(

N

2

)

edges is chosen independently with probability p. The ER model
depicts a random network with no particular structural bias.

Barabási-Albert (BA) scale-free model: The BA scale-free model [26] more
closely approximates real-world complex networks, for example, the World Wide
Web, biological networks and social networks. In these networks, the probability
that a node connects with k other nodes is roughly proportional to k−γ , for some
constant γ (thence, they are also referred to as power-lay graphs). Therefore, it is
more likely to observe few highly connected hubs, although most nodes are con-
nected to few other nodes. Barabási and Albert provided a simple methodology
for constructing such graphs based on a growth process which uses preferential
attachment. Starting with a small number nodes, at every time step add a new
node that is more likely to connect to nodes with higher incidence degree. The
resulted graph (or network) shows a power-law degree distribution P (k) ∽ k−γ ,
where γ = 2.9 ± 0.1.

4 Simulation setup and results

For our simulation analysis, we constructed sets of random graphs using the four
models described in the previous section. Each graph G = (V, E) —where V is
the set of nodes and E is the set of edges— has |V | = 25,000 nodes. Relevant
details regarding each graph types are outlined below. The tested networks were
implemented in the C programming language with the igraph C library [35], used
to support the implementation of the simulations. For our analyses, we performed
20 simulation runs, each with a different set of graphs, and the presented results
are the averages obtained across the composite of these runs.

Overnet graphs: We simulated an Overnet network which grows from an initial
set of 2 nodes to 25,000 nodes. Each node in the network has k-buckets with a
total of at most 20 peers, i.e. k = 20. We modelled this network as sets of random
undirected graphs. Each graph having 25,000 nodes and maximum degree of 20,
the maximum number of edges is |E| = 25, 000 ∗ 20/2 = 250, 000. In fact, for the
Overnet graphs we generated for the simulation analysis, the average number of
edges is 221,137, corresponding to an average degree of 17.69.

Gnutella graphs: We simulated a Gnutella network which starts with an initial
node set of 2 nodes and grows to 25,000 nodes. In the simulation implementation,
we placed no limits on the number of peers that a node may connect to; however,
the number of connections that any given node can initiate was limited to 9. This
restriction allows the number of edges in the Gnutella graph to approximate
that of the Overnet graph, since the expected average overall degree should
be 18 = 2 ∗ 9. We modelled the simulated Gnutella network as sets of random



undirected graphs; each graph has 25,000 nodes and the set of 20 Gnutella graphs
has an average of 224,427 edges, with an average degree of 17.95.

Erdős-Rényi (ER) random graphs: An ER random graph can be represented
as G(n, p) where n is the number of nodes and p is the probability that an edge—
drawn from the edge set with

(

n

2

)

edges—is present. We utilised the igraph C
library to generate 20 undirected ER graphs with n = 25, 000 and p = 0.000708.
The average number of edges for the set of 20 ER graphs is

(

25000

2

)

∗ 0.000708,
i.e., 25000∗24999

2
∗ 0.000708 = 221, 241, i.e. an average degree of 17.71, where this

value for p was intentionally selected to approximate the connectivity of the
tested Gnutella and Overnet networks.

Barabási-Albert (BA) scale-free graphs: We utilised the igraph C library
to generate 20 undirected BA graphs for our simulation. Each graph has 25,000
nodes, and each node has a maximum of 9 outward connections, which for similar
reasons as for Gnutella networks should yield a similar number of edges. In fact,
the average number of edges for the set of 20 BA graphs is 224,991, corresponding
to an average degree of 17.99.

4.1 Degree distribution of the graphs

Figure 1 shows the degree distribution of the four graphs we discussed above.
The standard deviation for the histogram values (number of nodes having a given
degree) ranges from 0 to 14.5% of the calculated mean values.
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Fig. 1. Degree distribution of Overnet, ER, Gnutella and BA graphs.

It is readily apparent from this figure that the Gnutella graph is very similar
to the BA graph. This supports the findings of previous works [36, 37] which indi-
cate that Gnutella networks exhibit similar power-law properties as BA scale-free
networks. The degree distribution for the ER graph is a binomial distribution, as
expected. The use of the DHT algorithm in Overnet has the effect or randomly
selecting nodes in the network, which is almost equivalent to the construction
of the ER graph, and hence the head of their respective degree distributions is



somewhat similar. The key difference between these two models is that, since
in Overnet there is a maximum degree limit of 20, the tail of what would be
otherwise a binomial distribution is “bunched up” at degree values 19 and 20.

4.2 Performance measures

We identified three key performance measures for assessing the effectiveness of a
botnet. Only the diameter of the graph has been previously used in this context.
We present them below:

Reachability from a given node : With a decentralised C&C infrastructure,
a botnet operator can issue commands to the botnet from any node within
the botnet. A key measure, therefore, of the effectiveness of the botnet, is the
number of nodes that can be reached within a given distance from a node x. Let
Γk(x) denotes; where the set of nodes at distance k from a node x in a graph
G = (V, E).

Γk(x) = {y ∈ V : d(x, y) = k},

where d(x, y) represents the length, i.e., number of hops, of the shortest path
between node x and y. Let Nk(x) represents the set of nodes at distance at most

k from x.

Nk(x) =

k
⋃

i=0

Γi(x)

Nk(x) with high cardinality for small k’s is more advantageous for botnet oper-
ators. The higher the cardinality of Nk(x), the better the botnet will perform,
since, a larger percentage of nodes will be reachable within k hops from any
given node.

Figure 2 shows the histogram for reachability percentages, rounded up to
nearest 10%, i.e. ⌈Nk(x)/25,000 ∗ 100⌉) for k = 1, 2, 3, respectively, for the four
models considered. The standard deviation for these histogram values ranged
from 0 to 16.4% of the calculated mean values over the 20 graphs generated.
For example, Figure 2(a) in particular, indicates that none of the 25,000 nodes
in either the Overnet or ER networks we simulated, are able to reach even 10
percent of the nodes in the botnet within 1 hop. On the other hand, Figures
2(b) and 2(c) indicate that of the four graph types, BA graphs have the highest
reachability within 2 and 3 hops, respectively, followed by Gnutella, ER and
Overnet graphs. This is likely due to the fact that the BA graphs have the largest
number of highly connected nodes, followed by Gnutella, ER and Overnet graphs.
The presence of highly connected nodes creates the opportunity for shorter paths
between the origin x and its target nodes, and hence increase the size of Nk(x).
The difference in the number of such nodes for the four graph types is readily
observable in Figure 1, except for the case of BA and Gnutella which appear very
similar from the plot. A more detailed analysis of the raw data used to generate
Figure 1 indicates, however, that the BA graphs achieve a slightly larger number
of highly connected nodes.
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Fig. 2. Reachability histogram for k hops, with (a) k = 1, (b) k = 2, and (c) k = 3.

Shortest path length sets : Let d(u, v) represents the length of the shortest
path between u and v, where u, v ∈ V , for a graph G = (V, E). Let Ll(u, v)
denote the set of all node pairs (u, v), such that, d(u, v) = l, i.e.,

Ll(u, v) = {(u, v) : u, v ∈ V ∧ d(u, v) = l}

A network with sets Ll(u, v) of high cardinality for small values of l is more
advantageous for botnet operators, since this allows messages to reach intended
recipients in fewer hops. One may ask, why would a botnet operator care about
the number hops a message must traverse in order to reach its recipient? Since
in today’s Internet, each hop involves no more than milliseconds or at worst a
few seconds, a few more hops probably do not significantly affect the speed of
propagation of botnet commands. However, each extra hop required to reach
a given fraction of the network, will result in approximately a 9- or 18-fold
increase in the number of messages (since in our case, the average outdegree is
either 9 or 18, depending on the network model). Thus, since the overall network
“footprint” of the C&C infrastructure increases exponentially with the number
of hops, reachability within a given number of hops or equivalently the number
of hops required to achieve a given portion of the network are very significant
measures in terms of stealth. Botnets with Ll(u, v) with higher cardinality for
small l, will likely operate with greater degree of stealth than those with Ll(u, v)
with lower cardinality for small l.
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Figure 3 shows the simulation results for the Ll(u, v) cardinalities for the four
graph types we tested. The standard deviation for these cardinalities was within
0.8% and 24% of the calculated mean values over the 20 graphs generated. The
results indicate that for l < 4, Ll(u, v) has higher cardinality for BA, followed by
Gnutella, ER and Overnet graphs; |Ll(u, v)| for ER is only slightly higher than
that of Overnet graph for l < 3. Whereas for l ≥ 4, the order for |Ll(u, v)| is
reversed; being Overnet, followed by ER, Gnutella and BA. These results, again
can be attributed to the fact that BA graphs have higher number of highly
connected nodes than Gnutella, ER and Overnet graphs; similarly, Gnutella
graphs have higher number of highly connected nodes than ER and Overnet,
and so on.

Diameter of the network graph : The diameter, diam(G), of a graph G =
(V, E) is the length of the longest shortest path separating any two nodes. Thus,
it can be defined as diam(G) = maxu,v d(u, v), where d(u, v) is the length of
the shortest path between u and v. Botnets with smaller diameter are desirable
for botnet operators, since this allows messages to traverse fewer nodes before
reaching their intended recipients, and this has non-negligible impact in terms
of stealth, as previously discussed. This measure has been used previously by
Dagon, Gu, Lee and Lee [4]. Table 1 shows the diameter of the four network
we simulated. Once again, the diameters of the four network graphs are very
similar, with ER and Overnet being only slightly worse.

5 Disinfection analysis

The disinfection of bot code from infected machines can be modelled as the re-
moval of nodes (and incident edges) from the graph G = (V, E) representing the
underlying C&C infrastructure. Let A = {n1, n2, .., nj} be the nodes correspond-
ing to the disinfected bots (removed from the botnet C&C infrastructure) and



Table 1. Diameter of the network graphs

Graph Diameter

Overnet 6
ER 6
Gnutella 5
BA 5

let Ḡ = (V̄ , Ē), with V̄ = V − A, denote the new underlying graph of the C&C
infrastructure. The effectiveness of the disinfection strategy can be characterised
by the decrease of |V̄ | and |Ē|.

5.1 Disinfection strategies

For our simulation analysis, we consider three disinfection strategies, as described
below.

Random disinfection: The focus here is just to disinfect bots as they are
discovered, without attempt to gain insight in the overall C&C infrastructure
of the botnet. This strategy is equivalent to the occurrence of random errors
in the botnet, i.e. random removal of nodes from G. This disinfection approach
models a user or system administrator discovering and successfully removing
the bot code from the machine, while making no attempt to acquire or use any
information gleaned from the bot to aid in the rolling-up the overall botnet.

Tree-like disinfection: When bots are discovered, information about their peer
lists (peers they are connected to) can be gleaned from analysing their commu-
nication traffic or by reverse engineering the bot code. A peer list can then be
used to identify other bots, and the other bots peer lists, in turn can be used to
discover other bots, and so on.

Global information-based disinfection: The aim of this approach is to ac-
quire information about a botnet C & C infrastructure within an allowed time
period, then use the information to prioritise the bots in terms of the order with
which they should be disinfected. This approach divides time into discrete time
windows ∆ti’s. All bots discovered within a given time slot ∆ti are considered as
an ordered set Ai whose elements are ordered according to their assessed disin-
fection priorities. At the end of ∆ti, the elements of Ai are disinfected according
to their order in the set. The bots in the sets Ai’s can be ordered in decreasing
order of the degrees of the given bots within the botnet C&C infrastructure.
Bots with the same degree are ordered according to the order they were discov-
ered. This approach models, for example, a large-scale ISP or large private- or
public-sector organisation observing a given botnet, active within its confines,
and then using the gained information to inflict maximal damage on the bot-
net, as facilitated by having local bot discovery processes forward what they



learn to a centralised analysis process, which then selects the most appropriate
disinfection approach.

This latter disinfection mechanism requires a lot of global information which
may be hard to gather across different administrative domains. However, as men-
tioned in the review of the literature, Cooke, Jahania, McPherson [10] already
suggested possible detection methods based on the correlation of events gathered
by distributed sensors. In any case, this global information approach is useful
since it should represent the optimal strategy against which any disinfection
strategy should be compared.

5.2 Disinfection analysis results

Figure 4 shows the reachability results for k = 1, 2, 3, for the four graph types
after 20% of the nodes were removed randomly. The standard deviation for the
histogram values range from 0 to 4.8% of the calculated mean values over the
20 graphs generated for each network type.
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Fig. 4. Random disinfection reachability histograms for k hops after 20% of the nodes
are removed, for (a) k = 1, (b) k = 2, and (c) k = 3.

The random disinfection results of Figure 4 show the same trends as those of
Figure 2. Additionally, comparison of Figures 2(b) with 4(b) and 2(c) with 4(c)
indicates that the removal of a fixed percentage of nodes have greater effect on
ER and Overnet graphs. For example, Figures 2(b) and 4(b) show that when 20%



of the nodes are randomly removed from ER and Overnet graphs, the number
of nodes with 20% reachability fell from 15,000 to approximately 1,500, i.e., a
decrease of 90%. Whereas for ER and Overnet graphs, the number of nodes with
20% reachability fell from approximately 25,000 to 18,000 for BA and 16,000 for
Gnutella, i.e., a decrease of 28% and 36%, respectively. This supports previous
results [28–30] indicating that BA graphs are more resilient to random errors
(random removal of nodes) than ER graphs. In essence, since both Gnutella and
BA graphs exhibit only a few nodes of very high degree, there is a low probability
that a given random removal will remove such a node. Hence, reachability is
preserved since it is highly probable that all other nodes have a short path to
one of these highly connected nodes.
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Fig. 5. Reachability histograms for k = 2, 3 hops after tree-like disinfection, (a) and
(b), and global information-based disinfection, (c) and (d), respectively.

Similarly to the scenario for the random removal strategy, Figures 5 and 6
provide, respectively, the results for reachability and shortest path length sets
cardinalities for the other two directed disinfection strategies, after the same
20% portion of the nodes have been disinfected.

In the case of the tree-like disinfection, comparison of Figures 5(a) with 2(b),
5(b) with 2(c), and 6(a) with 3, shows that Overnet and ER graphs exhibit
greater degree of resilience to disinfection than Gnutella and BA graphs. For
example, Figures 6(a) and 3 reveal that when 20% of the nodes are removed
from the graphs via tree-like disinfection, the number of pairs with the length of
the shortest path equal to 3, decreases from approximately 1.75×108 for BA and
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Fig. 6. Shortest path lengths results after 20% of the nodes removed via (a) tree-like
disinfection, and (b) global information-based disinfection.

Table 2. Disinfection data: fraction of nodes removed vs. diameter

Random Tree-like Global info.

f ON ER GN BA ON ER GN BA ON ER GN BA

0 6 6 5 5 6 6 5 5 6 6 5 5
0.1 6 6 5 5 6 6 6 6 6 6 8 ∞
0.2 6 6 6 6 6 6 7 7 6 7 ∞ ∞
0.3 7 7 6 6 6 7 ∞ ∞ 7 ∞ ∞ ∞
0.4 7 7 ∞ ∞ 7 7 ∞ ∞ ∞ ∞ ∞ ∞

1.25 × 108 for Gnutella to approximately 2.0 × 107 for both; a decrease of over
88% for BA and 84% for Gnutella graphs. Whereas for Overnet and ER graphs,
the decrease is from approximately 5.0×107 to 2.0×107, i.e., a decrease of 60%.
Of course, from the perspective of a graph intended to malicious use, tree-like
disinfection can be viewed as a measure of the ease with which the network could
be rolled-up based on iteratively exploiting local connectivity knowledge.

For global information-based disinfection, comparison of Figures 2(b) with
5(c), 2(c) with 5(d), and 3 with 6(b) reveal the most interesting results: Overnet
graphs exhibit much greater resilience to global information-based disinfection
than ER graphs. For example, a look at Figures 2(b) and 5(c) shows that when
20% of the nodes of the graphs are removed via global information-based dis-
infection, the number of nodes that have 10% reachability for k = 2, decreases
from all 25,000 nodes for both Overnet and ER graphs, to approximately 17,500
for Overnet and 4,000 for ER. Obviously, this is a key design consideration if
one is seeking to construct P2P networks to support malicious activities un-
der the expectation that the defensive community will be activity engaged in
cooperatively trying to disable the network.

The results from diameter analysis also confirm this trend. Table 2 indicates
that for global information-based disinfection, the ER graphs became discon-
nected when 20% of the nodes were removed; whereas, for Overnet graphs, 30%
of the nodes had to be removed for the graphs to become disconnected. It is
important to notice that diameter changes are not gradual, but instead occur
at sharp thresholds (see Table 2). This is much akin to the previously known



[34, 38] sharp transitions in connectivity in ER random graph processes, where
edges are added one at a time with the given probability p. It should be noted
that for the disinfection analysis via the diameter measure, the mode of data
sets for the 20 simulation runs, instead of their mean, was computed to support
the requirement to include graph disconnection, as represented by ∞ in Table 2.
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Fig. 7. The effect of the three disinfection strategies on Overnet, for (a) k = 2 and (b)
k = 3, after removal of 20% of the nodes.

Finally, Figure 7 tells the most compelling story of all. Even though, all re-
sults so far indicate that Overnet is the most resilient botnet C&C structure,
the comparison of the effect of the various disinfection strategies highlights the
need for further research efforts to develop effective mitigation schemes. Whereas
global information-disinfection strategy has much more dramatic effects on BA,
Gnutella and ER graphs, than on the Overnet Graph,there is essentially very
little difference between the three disinfection strategies for Overnet. In other
words, the significant extra effort necessary to implement the most complex
disinfection strategies only pays off against the less resilient types of network,
but not against Overnet. Against Overnet, for the same percentage of nodes
removed, the simpler random removal strategy is equally effective (or inneffec-
tive) as the more complex tree-like or global information-based strategies. This
suggests the need for further research geared to develop more efficient botnet
mitigation schemes against Overnet-type C&C infrastructures.

6 Discussion

This work began from the general research supposition that Storm was unlikely
to have arrived at its use of Overnet by happenstance. Instead, it was more likely
that Overnet provided an available solution that well-served the intrinsic needs
created when one tries to run large-scale botnets to service malicious activities.
Through the analysis above, it has been shown Overnet indeed provides a solu-
tion which allows stealthiness and resilience to be traded-off against efficiency.
In effect, of the networks tested, Overnet provides the best solution for a P2P
network designed to support malicious activities within an environment within



which the P2P network itself will be under attack at the cost of only relatively
mild losses in efficiency. No claim is made that Overnet represents the ultimate
solution for malicious botnet design, merely that as the current step along the
evolutionary path it appears to be a fairly good solution from the context of
engineering design, assuming one of the key design criteria is botnet longevity.

In parallel, the question was explored as to whether the available formal
graph-theoretic models, i.e., Erdős-Rényi random graphs and Barabási-Albert
scale-free networks, would better serve the botnet operators’ needs. From the
research perspective, the applicability of such models would have the distinct
advantage that at-scale network behaviours would, in the worst-case, depending
on the parameter of interest, be asymptotically computable; hence, side-stepping
the need for at-scale simulation studies. Two interesting results were observed
via this comparison. The non-maliciously used P2P solutions, namely Gnutella,
did follow relatively closely the Barabási-Albert scale-free network model, at
least with respect to the tested measures. Hence, it would not be unreasonable
to model such networks as Barabási-Albert networks.

The behaviour of Overnet, on the other hand, although closest to Erdős-
Rényi random graphs, was not well modelled as an Erdős-Rényi graph and,
in fact, significantly surpassed their performance with respect to tree-like and
global information-based disinfection. These disinfection approaches, in partic-
ular, model the defender iteratively attempting to roll-up the botnet; hence,
Overnet’s success may help to explain why, in part, its real-world disinfection
has presented a challenge. In essence, Overnet is the most diffuse and least-tree
like of all of the tested networks, where each node contains (or exposes once
discovered) the least information about the botnet’s overall structure. Whereas,
efficiency pushes the network solution toward a much more tree-like structure,
ideally with the trunk of the tree being the high capacity nodes, but this entails
creating a network which is easily rolled-up or disconnected.

The above questions were explored through three newly introduced mea-
sures in this context, namely: reachability, shortest path sets, and diameter. It
was shown that together these measures provided a quantitative mechanism to
explore what appears to be an innate trade-off of network efficiency versus its
stealth and resilience. In particular, these measures allow some insight to the
design of concern when constructing P2P networks to service malicious activi-
ties and, hence, expected to exist and operate while themselves under direct and
continual threat. No claim is made that the proposed measures are in and of
themselves either complete or sufficient. It is fully expected that other measures
exist which are equally important in exploring and understanding the design con-
siderations of botnet C&C. The proposed measures do, however, expose issues
which have not been previously addressed.

6.1 Conclusions

The conclusions of this work can be succinctly stated as follows:



1. A general trade-off of network efficiency versus stealthiness and resilience
exists and allows the operators of malicious botnets to sacrifice a modicum
of efficiency to achieve significant gains in likely botnet longevity.

2. The developed measures of reachability, shortest path sets, and diameter
when combined provide an effective mechanism to explore the nature of
such trade-offs.

3. It appears that non-maliciously used P2P networks, i.e., Gnutella, can likely
be well modelled via existing graph-theoretic models, i.e., Barabási-Albert
networks, whereas malicious botnets, i.e.,Overnet, cannot; this implies a
need to either augment the theory models to include Overnet-like behaviours,
a seemingly difficult task due to the hard peer-list thresholding done within
individual nodes, or the need to turn to simulation-based studies to explore
the at-scale behaviours of such botnets.

4. If one was building a botnet to service malicious activities then Overnet
would appear to provide a strong solution to a number of the engineering
challenges faced when the deployment environment is assumed to be hos-
tile, where this is irrespective of the mechanisms by which Storm’s actual
operators may have arrived at this solution.

5. Overnet, due to its quite diffuse structure, shows the particular troubling
behaviour of a very slow degradation in its capabilities, as nodes are removed
in a tree-like fashion using the local peer list information, with disconnection
only occurring suddenly once one has already removed more than 40% of the
network’s nodes.

6.2 Future work

Obviously, this work, by the nature of the approach applied, has focused solely
on the issues and measures which can be assessed through static graph analysis.
A number of interesting and important issues exists with respect to how the
proposed network models actually behave within real networks. For example, as
discussed above, stealthiness is a critical issue if the botnet is to achieve longevity.
Achieving stealthiness is, at least in part, related to a) ensuring that network
hot spots do not arise due to intra-botnet communications, and b) reducing the
message footprint by keeping short intra-botnet path lengths. Additionally, a key
concern is gaining an understanding of just how quickly a given command can be
propagate through the actual botnet, or more generally, the time frame require to
ensure that M machines of the botnet’s available N machines have been recruited
to serve a particular need, i.e., spam generation, a DDoS attack, network probing
activities, etc.. Exploring such issue requires simulating such botnets at-scale,
given the likelihood of emergent behaviours, inclusive of the actual network
traffic they generate. We are moving forward with developing such simulations.
Within this context, we are also beginning to look at whether more effective
and practical approaches to counter a Storm-like botnet may exist and what
these may entail. Obviously, it is unlikely that Storm-like botnets represent an
evolutionary end-point of malicious botnets; gaining an understanding of how
such networks can be tuned and designed to survive disinfection approaches is



important to improving our ability to effectively counter such networks. It is
unclear whether disinfection and mitigation approaches developed under small-
scale system analysis will translate effectively to large-scales systems, i.e., into
the botnet-scales already seen in real-world. Hence, an area we are exploring is
the analysis and characterisation of the emergent behaviours which are exhibited
by P2P networks and, more generally, botnets as they scale, as well as the
development of effective at-scale disinfection strategies. Finally, there is of course
the need to explore how on-going birth and death processes effect measured
network behaviours and capabilities.

References

1. CNN Technology News: Expert: Botnets no. 1 emerging Internet threat. www.cnn.
com/2006/TECH/internet/01/31/furst/ (January 2006)

2. Washington Post Technology news: The botnet trackers. www.washingtonpost.

com/wp-dyn/content/article/2006/02/16/AR2006021601388.html (February
2006)

3. New York Times Technology news: Attack of the zombie computers is growing
threat. www.nytimes.com/2007/01/07/technology/07net.html (January 2007)

4. Dagon, D., Gu, G., Lee, C., Lee, W.: A taxonomy of botnets. In: Proc. Computer
Security Applications Conference (ACSAC). (December 2007) 325–339

5. Vogt, R., Aycock, J., M. J. Jacobson, J.: Army of botnets. In: Proc. 14th Annual
Network and Distributed System Security Symposium (NDSS). (March 2007)

6. Ramachandran, A., Feamster, N.: Understanding the network-level behavior of
spammers. In: Proc. Conference on Applications, technologies, architectures, and
protocols for computer communications. (October 2006)

7. Lanelli, N., Hackworth, A.: Botnets as a vehicle for online crime. www.cert.org/

archive/pdf/Botnets.pdf (December 2005)
8. Bureau, P.M., Lee, A.: Malware storms: a global climate change. Virus Bulletin

www.virusbtn.com (November 2007)
9. Oikarinen, J., Reed, D.: Internet relay chat protocol. Request for Comments (RFC

1459) (May 1993)
10. Cooke, E., Jahanian, F., McPherson, D.: The zombie roundup: Understanding,

detecting, and disrupting botnets. In: Proc. 1st Conference on Steps to Reducing
Unwanted Traffic on the Internet (SRUTI). (July 2005)

11. Barford, P., Yegneswaran, V.: An inside look at botnets. Advances in Information
Security 27 (March 2007) 171–191

12. Binkley, J.R., Singh, S.: An algorithm for anomaly-based botnet detection. In:
Proc. 2nd Conference on Steps to Reducing Unwanted Traffic on the Internet
(SRUTI). (July 2006)

13. Strayer, W.T., Walsh, R., Livadas, C., Lapsley, D.: Detecting botnets with tight
command and control. In: Proc. 31st IEEE Conference on Local Computer Net-
works. (November 2006)

14. Rajab, M.A., Zarfoss, J., Monrose, F., Terzis, A.: A multifaceted approach to
understanding the botnet phenomenon. In: Proc. 6th ACM SIGCOMM Conference
on Internet measurement. (October 2006)

15. Gu, G., Zhang, J., Lee, W.: BotSniffer: Detecting botnet command and control
channels in network traffic. In: Proc. 15th Annual Network and Distributed System
Security Symposium (NDSS). (February 2008)



16. Fisher, D.: Storm, nugache lead dangerous new botnet barrage. SearchSecurity.
com (December 2007)

17. Grizzard, J., Sharma, V., Nunnery, C., Kang, B., Dagon, D.: Peer-to-peer botnets:
overview and case study. In: Proc. 1st Workshop on Hot Topics in Understanding
Botnets (HotBots 2007). (April 2007)

18. Wang, P., Sparks, S., Zou, C.C.: An advanced hybrid peer-to-peer botnet. In: Proc.
1st Workshop on Hot Topics in Understanding Botnets (HotBots 2007). (April
2007)

19. Kutznet, K., Fuhrmann, T.: Measuring large overlay networks - the overnet exam-
ple. In: Proc. Kommunikation in Verteilten Systemen (KiVS). (Mar 2005)

20. Maymounkov, P., Mazières, D.: Kademlia: A peer-to-peer information system
based on the XOR metric. In: Revised Papers from the 1st International Workshop
on Peer-to-Peer Systems (IPTPS). (March 2002)

21. Stewart, J.: Storm worm DDoS attack. http://www.secureworks.com/research/
threats/storm-worm (February 2007)

22. Utter, D.: Storm botnets using encrypted traffic. http://www.securitypronews.

com (October 2007)
23. Honeynet Project: Know your enemy: Fast-flux service networks. www.honeynet.

org/papers/honeynet (July 2007)
24. Gaudin, S.: Storm botnet puts up defenses and starts attacking back. Informa-

tionWeek, http://www.www.informationweek.com (August 2007)
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