
Rootkit-Resistant Disks

Kevin R. B. Butler, Stephen McLaughlin and Patrick D. McDaniel
Systems and Internet Infrastructure Security Laboratory (SIIS)

Pennsylvania State University, University Park, PA
{butler,smclaugh,mcdaniel}@cse.psu.edu

ABSTRACT
Rootkits are now prevalent in the wild. Users affected by rootk-
its are subject to the abuse of their data and resources, often un-
knowingly. Such malware becomes even more dangerous when it
is persistent–infected disk images allow the malware to exist across
reboots and prevent patches or system repairs from being success-
fully applied. In this paper, we introduce rootkit-resistant disks
(RRD) that label all immutable system binaries and configuration
files at installation time. During normal operation, the disk con-
troller inspects all write operations received from the host operat-
ing system and denies those made for labeled blocks. To upgrade,
the host is booted into a safe state and system blocks can only be
modified if a security token is attached to the disk controller. By
enforcing immutability at the disk controller, we prevent a compro-
mised operating system from infecting its on-disk image.

We implement the RRD on a Linksys NSLU2 network storage
device by extending the I/O processing on the embedded disk con-
troller running the SlugOS Linux distribution. Our performance
evaluation shows that the RRD exhibits an overhead of less than
1% for filesystem creation and less than 1.5% during I/O intensive
Postmark benchmarking. We further demonstrate the viability of
our approach by preventing a rootkit collected from the wild from
infecting the OS image. In this way, we show that RRDs not only
prevent rootkit persistence, but do so in an efficient way.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
Security

Keywords
storage, security, rootkits, labels

1. INTRODUCTION
Rootkits exploit operating system vulnerabilities to gain control of
a victim host. For example, some rootkits replace the system call

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’08, October 27–31, 2008, Alexandria, Virginia, USA.
Copyright 2008 ACM 978-1-59593-810-7/08/10 ...$5.00.

table with pointers to malicious code. The damage is compounded
when such measures are made persistent by modifying the on-disk
system image, e.g., system binaries and configuration. Thus, the
only feasible way of recovering from a rootkit is to wipe the disk
contents and reinstall the operating system [3, 13, 19, 20]. Worse
still, once installed, it is in almost all cases impossible to securely
remove them. The availability of malware and the economic incen-
tives for controlling hosts has made the generation and distribution
of rootkits a widespread and profitable activity [44].

Rootkit-resistant operating systems do not exist today, nor are
they likely to be available any time soon; to address rootkits is to
largely solve the general problem of malicious software. Current
operating system technologies provide better tools than previously
available at measuring and governing software [34], but none can
make the system impervious to rootkits without placing unreason-
able restrictions on their operation. However, while it is currently
infeasible to prevent an arbitrary rootkit from exploiting a given
system, we observe that preventing them from being becoming per-
sistent is a significant step in limiting both their spread and damage.

We introduce a rootkit-resistant disk (RRD) that prevents rootkit
persistence. We build on increasingly available intelligent disk ca-
pabilities to tightly govern write access to the system image within
the embedded disk processor. Because the security policy is en-
forced at the disk processor (rather than in the host OS), a suc-
cessful penetration of the operating system provides no access to
modify the system image. The RRD works as follows:

1. An administrative token containing a system write capability
in placed in the USB port of the external hard drive enclosure
during the installation of the operating system. This ensures
that the disk processor has access to the capability, but the
host CPU does not.

2. Associated with every block is a label indicating whether it
is immutable. Disk blocks associated with immutable system
binaries and data are marked during system installation. The
token is removed at the completion of the installation.

3. Any modification of an immutable system block during nor-
mal operation of the host OS is blocked by the disk processor.

4. System upgrades are performed by safely booting the system
with the token placed in the device (and the system write ca-
pability read), and the appropriate blocks marked. The token
is removed at the completion of the upgrade.

An RRD superficially provides a service similar to that of “live-
OS” distributions, i.e., images that boot off read-only devices such
as a CD. However, an RRD is a significant improvement over such
approaches in that (a) it can intermix and mutable data with im-
mutable data, (b) it avoids the often high overheads of many read-

only devices, and (c) it permits (essential) upgrading and patch-
ing. In short, it allows the host to gain the advantages of a tamper-
resistant system image without incurring the overheads or constraints
of read-only boot media.

In this paper, we present the design and analysis of the RRD. The
system architecture, implementation, and evaluation are detailed
and design alternatives that enable performance and security opti-
mizations discussed. We implement the RRD on a Linksys NSLU2
network storage device [33] by extending the I/O processing on the
embedded disk controller, and use USB flash memory devices for
security tokens. Our implementation integrates label and capability
management within the embedded software stack (SlugOS Linux
distribution [50]). We further extend the host operating system ker-
nel and installation programs to enable the use of the non-standard
RRD interfaces and security tokens: however, in practice, modifi-
cations to host operating systems will not be needed.

Our performance evaluation shows that the RRD exhibits small
performance and resource overheads. The experiments show an
overhead of less than 1% for filesystem creation and less than 1.5%
during I/O intensive Postmark benchmarking. Further investiga-
tion shows that the approach imposes a storage overhead of less
than 1% of the disk in a worst-case experiment. We experimentally
demonstrate the viability of the RRD as a rootkit countermeasure
by infecting and recovering from a rootkit collected from the wild.
Furthermore, we show through examination of the chkrootkit util-
ity that a large number of rootkits would be rendered non-persistent
through use of the RRD.

Mutable configuration and binaries that can compromise the sys-
tem (such as user cron [60] jobs), can reinfect the system after
reboot. However, once patched, the system will be no longer be
subject to the whims of that malware. This represents a large step
forward in that it introduces a previously unavailable feasible path
toward recovery. Note that the RRD does not protect the system’s
BIOS (which is burned into system PROM/EPROM/flash). The
RRD does, however, protect all portions of the boot process that use
immutable code or data, including the master boot record (MBR).

Section 2 introduces in more detail the concepts behind RRDs
and their design. Section 3 describes the implementation of an
RRD, while Section 4 describes our performance evaluation, Sec-
tion 5 discusses practical issues when using RRDs, and Section 6
provides related work. We conclude with Section 7.

2. ROOTKIT-RESISTANT DISKS
To understand the requirements for designing storage solutions

that resist persistent rootkits, we first examine their nature and op-
eration and commonalities that exist between them. We first present
a background on how rootkits have operated to date, then layout re-
quirements for disks that prevent persistent rootkits and the design
decisions that we made to implement these goals.

2.1 Background
Rootkits have been well studied, and those that attack the operat-

ing system and reside in the kernel have been demonstrated in both
theory and practice [21]. They can be user-mode programs that per-
form functions such as adding inline hooks into system functions or
patching runtime executables dynamically (e.g., system commands
such as ps, netstat, and top), or kernel-mode programs that
hook into the kernel, layer themselves onto device drivers, or di-
rectly manipulate the OS kernel, and sometimes the hardware it-
self [24]. Rootkits can be persistent, where they survive a system
reboot, or non-persistent, where they install themselves into volatile
memory and do not survive across reboots [22].

Numerous techniques for hiding rootkits have been implemented,
including modification of system files and libraries [8], boot sector
modification [51], and altering the ACPI code often stored in the
BIOS [23] – this approach may potentially even evade detection
by a TPM, by causing it to report correct hash values [26]. While
many of these attacks can be fended off through integrity protec-
tion mechanisms [27, 40] and kernel-level rootkit detectors [6, 47],
increasingly sophisticated rootkits can evade this level of detection.
Such attacks can subvert virtual memory [54] or install themselves
as a virtual machine monitor underneath the operating system it-
self [28], demonstrating that whoever controls the lowest layer of
the system gains the advantage in attacking or defending it.

With all of these rootkits, a successful compromise means that
data is susceptible to exposure. By using RRDs, however, the user
can effectively reside at a lower level than the OS by directly inter-
facing the disk with a physical token to arbitrate access to data. The
rootkit will thus be unable to gain access to read and write data on
portions of the drive that the user does not have access to, regard-
less of OS compromise. This provides a level of on-disk protection
that has not previously been feasible.

2.2 Goals for an RRD
To provide a practical solution for an RRD, we need to ensure

that the following four goals are satisfied:

1. It must protect against real rootkits. The RRD must demon-
strably protect against currently deployed persistent kernel-
level rootkits.

2. It must be usable without user interaction and with min-
imal administration. The operation of the RRD should be
transparent during normal operation.

3. It must be highly performant. Accessing storage must be
feasible with as little performance overhead as possible, given
the rigorous demands for I/O throughput.

4. It must have low storage overhead. The RRD should con-
sume as little ancillary storage for metadata and use as little
additional space on the disk as possible.

2.3 RRD Design
Designing a suitable solution that fulfills the above requirements

presents the following two challenges:

1. As storage requests travel from a system call to the file sys-
tem to the storage, context about what is being asked for is
lost. For example, knowing whether requests for blocks are
related to each other (e.g., are write requests associated with
the same file or application) is not possible at the storage
layer because this information has been removed. This re-
sults in a semantic gap between file and storage systems (as
described by many, including Sivathanu et al. [49]). Data
security policies are often defined at the file level, but the
semantic gap makes the task of extending these policies to
the disk interface difficult, if not impossible, to implement
within conventional operating systems.

2. Enforcement of security in storage independently of the op-
erating system depends on the availability of a trusted admin-
istrative interface. The disk interface has traditionally been
limited to that of the system bus, as accessible by CPU and
possibly DMA controller. This interface is fully accessible
to the OS and thus is effectively compromised if the OS is
compromised.

We fundamentally address the semantic loss by not relying on
the file layer to provide context to the disk. Instead, the administra-
tor inserts a token into the disk when data is to be write-protected.
The token acts to label the blocks written to disk, such that with-
out the token present, they cannot be overwritten. By doing this,
the administrator provides context to the disk: it can differentiate
between labeled and unlabeled blocks, and between blocks labeled
with different tokens. The token may be physically plugged into
the drive (e.g., using a smart card or USB token).1 We say that any
data blocks written under a specific token are bound to that token,
such that they are rendered read-only whenever the token is not
present. Such data will be immutable to alteration on disk by any
processes within the operating system. Only a small subset of the
data on a disk will be bound in this manner, notably the binaries and
important sectors on a disk (e.g., the MBR) that would otherwise
be susceptible to being overwritten by a rootkit. The write-time
semantics associated with tokens are a natural consequence, given
that administrative operations requiring the presence of tokens are
performed on system data at well-defined times (e.g., during file
system creation, system installation, and package installation).

The physical action of inserting a physical token addresses our
second challenge, as the user is a trusted interface to the disk that
cannot be subverted by a compromised operating system. In essence,
we have reduced the trust problem to that of physical security of
the user and her associated tokens. As previously noted, our model
seeks to protect against persistent rootkits that have compromised
the operating system; thus, we consider the user a trusted compo-
nent in the system rather than an adversary. In addition, physical
attacks such as forging of the tokens, or attacking the drive itself
by opening it to scan its memory for metadata, are outside our pro-
tection model. Implementing tamperproof interfaces into the drive
appear contrary to the marketplace desires for inexpensive, high-
performance storage. However, building additional security into
the drive enclosure in a similar manner to the IBM 4758 secure
co-processor [12] is a design point that is only feasible to achieve
if the cost-benefit ratio for a specific application dictates it to be
appropriate.

2.4 Tokens and Disk Policy
An RRD has two modes of operation. Under normal operation,

the RRD is used like a regular disk, without any tokens present.
This is the mode of operation that a regular user will always use the
disk in, as will the administrator for the majority of the time. Only
during an administrative event will the disk be used in administra-
tor mode. We define an administrative event to be one that affects
the system as a whole and that only an administrator can execute.
Examples of these would be the initial installation of an operating
system onto the disk and subsequent upgrades to the operating sys-
tem, e.g., software package upgrades or full distribution upgrades.
Administrative mode is activated by inserting a token into the disk.
As shown in Figure 1, data blocks written then become labeled with
the inserted token and become immutable. Blocks labeled as im-
mutable may only be rewritten when the token associated with the
label is inserted into the disk. If the block has not been written un-
der a token, or if it is written without the presence of a token, it is
mutable and hence not write-protected. By differentiating between
mutable and immutable blocks, we can allow certain files such as
startup scripts to be only writable in the presence of a token, while
not forcing such a stipulation on files that should be allowed to be
written, such as log files.

1Note that proximity-based solutions such as ZIA [10] do not con-
vey intention and hence would not be suitable for this design.

Disk

NVRAM

Current Token

App
File

System

App
File

System
Host

Write OK Write Denied

(a) (b)

Figure 1: The use of tokens for labeling data in the RRD. Part
(a): The host system writes a file to unused disk space using the
gray token. The write is allowed and the file is labeled accord-
ingly. In part (b), any blocks written while the black token is
in the disk are labeled accordingly, and any attempts to write
gray-labeled data are denied as long as the gray token is not
present.

There is a special token in our system that acts in a manner dif-
ferent than described above. Because of the need for processes
to be able to write certain filesystem metadata, such as logs and
journals, we introduce the concept of a permanently mutable data
block. Blocks labeled permanently mutable (denoted `pm) during
filesystem creation are writable by all processes (subject to oper-
ating system protections, e.g., UNIX permissions), regardless of
whether the token is installed or not.

In a scenario where the drive is used to separate binaries that may
end up as vectors for rootkits and being loaded at boot time, only
one token may be necessary. This token would be used only when
system binaries are installed, as that would be the only time they
would require being written to the disk. Greater isolation may be
achieved by using separate tokens while performing different roles,
e.g., a token for installing binaries and another for modifying con-
figuration files. By differentiating between mutable and immutable
blocks, we can allow certain files such as startup scripts to be only
writable in the presence of a token, while not forcing such a stipula-
tion on files that should be changing, such as document files within
a user’s home directory.

When the RRD receives a write request for some contiguous re-
gion of blocks, R = {bi, bi+1, . . . bj}, it obtains the label `t from
the current token. If no token is present in the disk then `t = nil,
in which case the RRD verifies that no mutable blocks are included
in R. If `t is the permanently mutable label `pm, any unlabeled
blocks in R are labeled with `pm and the write is allowed. If the
token contains any other label, all blocks in the request are checked
for equality with that label, and any nil blocks are labeled accord-
ingly. The RRD’s write policy is specified in Algorithm 1.

Once a block has been labeled as immutable or permanently mu-
table, its label cannot be changed. Thus, in a system where im-
mutable data is often written, the possibility of label creep [48]
arises. Because of the semantic gap between the file and storage
layers, we are unable to perform free space reclamation in storage

1: for all blk in Request do
2: `b ←LABELOF(blk)
3: `t ←LABELFROMTOKEN()
4: if `b 6= nil and `b 6= `pm and `b 6= `t then
5: return ‘Write denied’
6: end if
7: if `b = nil and `t 6= nil then
8: `b ← `t

9: end if
10: end for
11: return ‘Write OK’
Algorithm 1: RRD-write. Only if a block is unlabeled or has the
same label `t as the inserted token will the write be successful;
otherwise, if there is a label mismatch or if the block is labeled
permanently mutable `pm, the write will fail.

when files are deleted. This leads to labeled blocks becoming unus-
able, as while they have been freed by the file system, they remain
write-protected by the disk. We find in our examination of label
creep that its effects on an RRD are limited; we investigate this
facet of operation through experimentation in greater detail in Sec-
tion 4.3. It is possible to mitigate the effects of label creep through
unlabeling of tokens; we explore this in further detail in Section 5.

2.5 RRD Operation
We now outline the steps by which an RRD would be set up and

operated. An RRD may be shipped pre-formatted with the appro-
priate labeled tokens, or the user may perform the initial set up of
the device. It is important at this stage to boot the system where the
disk is to be set up into a state that is free of rootkits that may infect
the machine; the disk is in a vulnerable state at this point. While a
trusted boot prior to the installation of an RRD (and with regards
to BIOS integrity) is outside the our scope of feasibility, a method
of ensuring a trusted system setup could involve the use of a root of
trust installation [56] where the system is booted from a trusted CD
and the subsequent boot and installation is measured for integrity
at every stage.

Once the system is booted, the disk may be formatted. The sim-
plest and safest manner for setting up the drive is to define a system
partition that holds the OS binaries and configuration files, and a
user partition for other data. During partitioning, the token must
be inserted to protect the MBR. The system partition may then be
formatted without an installed token such that the filesystem is mu-
table (i.e., data may be written to it). As mentioned above, cer-
tain special filesystem structures (e.g., a filesystem journal2) may
need to be always writable. The blocks allocated to these struc-
tures should be written with the permanently-mutable token. We
describe this process in more detail in Section 5.

At this point, the operating system may be installed on the disk.
A token should be inserted in the disk to move the RRD into admin-
istrative mode. This will render important binaries (e.g., programs
installed in the /usr/bin hierarchy in a UNIX-like system) and
configuration files immutable. Finer-grained access is possible at
this point; for example, if there is a desire for access to writing
binaries to be decoupled with access to configuration files, the in-
staller can be partitioned to first write the binaries with an appropri-
ate binaries token before writing configuration files (e.g., the /etc

2Note that we do not currently support full journal functionality in
a filesystem like ext3, because journaled data may be written to la-
beled blocks at a time when the token is not in the disk. We discuss
a small filesystem modification that supports full ext3 journaling in
Section 5.2.

hierarchy) with a configuration token. Once the installation is com-
plete, the user partition may be formatted and the disk is ready to
be operated.

Normal operation of the system should preclude the need for
any involvement of physical tokens. Only when system updates or
changes to the configuration are necessary will tokens be necessary.
To prevent the token from affecting other files during an upgrade,
it is optimal to perform these operations in their own runlevel, such
that processes are stopped and labels are not inadvertently written
to incorrect blocks. It is also important that the operating system
synchronize its data with the disk by flushing buffers (e.g., through
the sync command) when the upgrade is completed and before the
token is removed. At this point, the system may return to its pre-
vious runlevel and operations may continue as usual. Note that we
cannot protect against system upgrades that are already compro-
mised as may be the case, and protections against upgrade tamper-
ing are insufficient in current software update mechanisms [4]. An
RRD can protect against persistent rootkits that attack the system
when the token is not installed, but if a program contains a trojan
or other exploit and is installed when an administrative token is
present, it will have the ability to attack the boot process and install
itself to maintain persistence.

3. PROTOTYPE IMPLEMENTATION
We implemented an RRD that fulfills block requests over TCP.

The choice to use a network interface was made as development
of firmware for commodity disks is prohibitively difficult due to a
lack of open firmware and development environments. Our proto-
type RRD provides the same functionality and security guarantees
described above, and can be used as the root partition of a run-
ning system. Because the prototype exports a nonstandard inter-
face, we developed a driver for disk-to-host communication. This
driver would normally not be necessary given a disk with a stan-
dard interface, e.g. SCSI, and contributes nothing to the security
of our scheme. Finally, we create an installer to simplify the pro-
cesses of installing a base system on an RRD. We now describe the
implementation details of our prototype, as well as the RRD driver
and installer.

3.1 RRD
The prototype RRD has two components: a Linksys NSLU2 net-

work attached storage link [33], commonly referred to as a “slug”,
and an external USB hard disk. The setup of this prototype is shown
in Figure 2. The external hard disk is a standard model and offers
no additional functionality beyond the typical SCSI command in-
terface. The slug is a network storage link, an embedded device that
acts as a bridge between an external USB hard disk and a network
attached storage (NAS) device. It has one RJ45 jack that provides
the network interface, and two USB-2.0 ports used for the exported
storage devices. In our case, we use one of the USB ports for the
disk and the other for USB thumb drives which constitute the phys-
ical tokens. The role of the slug is threefold:

• Receive block requests from the network;

• Store and enforce the RRD’s policy;

• Act as an entry point for physical tokens.

In order to develop software for the slug, we replaced its de-
fault firmware with the SlugOS Linux distribution [50]. We then
uploaded netblockd, a server program we developed to satisfy
block I/O requests over TCP sockets. netblockd consists of
2,665 lines of code and was cross-compiled for the slug using the
OpenEmbedded framework [31]. netblockd satisfies all requests

User Space
Kernel Space

Application

File System

RRD Driver*

netblockd*

Slug

udev*

/dev/sda
/mnt/nvram
/mnt/token

slugos 4.8
Linux kernel

RRD Host

netblock
client*

External Drive

BLOCK-LABELS

Physical Token

Figure 2: The prototype RRD. Block requests are intercepted at the client by the RRD driver and sent to the slug over TCP.
netblockd receives the block request and consults BLOCK-LABELS and the optional physical token to determine if the request
is allowed. If so, netblockd fulfills the request from the external USB hard drive. netblockd accesses BLOCK-LABELS, the
physical token, and the external drive through mount points in the slug’s filesystem. An asterisk is placed next to each component
that we created or configured.

from the USB hard disk connected to the slug, taking as a parame-
ter the device name for the specific partition to export. Along with
providing the basic block interface, netblockd also implements
the security functionality of the RRD.

We detect physical tokens and notify netblockd of their in-
sertion and removal using the udev framework [29]. When a USB
thumb drive is inserted to the slug’s open USB port, a udev script
mounts it to /mnt/token and signals netblockd. netblockd
will then use the label from that token when making access control
decisions until it is removed, at which point the token is unmounted
and its label cleared from the slug’s memory.

The labels used to write protect disk blocks are stored in the
BLOCK-LABELS data structure. This structure is kept in RAM
while the slug is active, and saved to flash memory when powered
off. When netblockd receives a write request, it obtains the la-
bels corresponding to the requested blocks from BLOCK-LABELS,
and compares them to those on the current physical token, if any.
Because it is accessed on every write request, the search and in-
sert operations on BLOCK-LABELS must contribute only negligi-
ble overhead to the total disk latency. It also must maintain meta-
data for potentially all blocks on the disk, within the space con-
straints of the disk’s main memory, something that becomes more
challenging as magnetic storage capacities increase. We explore
scalability of the label data structure relative to disk capacity in
section 4.3.2. We now examine the design of the BLOCK-LABELS
data structure used in our prototype.

3.1.1 Label Management
File systems will attempt to store logically contiguous blocks,

i.e. blocks in the same file, in a physically contiguous manner.
We make use of this property by representing the disk as a set of
contiguous ranges for which all blocks in a given range have the
same label. If data is written to an unlabeled block, the write label
from the current token, if there is one, must be added to BLOCK-
LABELS. If this block is either adjacent to or between blocks of
the same label, the ranges containing these blocks will be merged,
reducing the size of the label structure. Searching BLOCK-LABELS
requires logarithmic time in the number of ranges, and inserting a

new range requires linear time. This is acceptable, as the number
of ranges is kept as small as possible.

3.2 Host Machine
In a typical RRD scenario, a standard SCSI or ATA driver would

suffice for communication between the host and disk. Because our
prototype exports a non-standard interface, we needed to imple-
ment an RRD device driver for the host machine. Note that while
this driver is necessary to communicate with the RRD, neither it,
nor the RRD to host protocol, contain any security measures. The
protocol contains only operations for reading, writing, obtaining
the disk’s geometry and reporting errors. For ease of implemen-
tation, we constructed the communication protocol in user space,
leaving the block I/O interface in kernel space. The RRD driver
consists of 1,314 lines of kernel code and 307 lines of user space
code.

In order to use our RRD as a root partition, we needed to mount
it at boot time. This required the RRD driver to be run as part of
the boot sequence. To achieve this, we created a Linux init ramdisk
(initrd) image. This image contains a small ramdisk filesystem with
utilities and drivers to be executed at boot time to prepare the de-
vice containing the root partition. Because the initrd is required
to mount the RRD, it cannot be located on the RRD itself. Nei-
ther can the kernel or bootloader. We can, however, achieve the
same security guarantees with our experimental setup by keeping
the bootloader, kernel and initrd on a read-only media such as a
CD-R. Note that in case of an IDE / ATA RRD, the BIOS can load
these components from the disk at boot time, eliminating the need
for the special RRD driver and initrd.

3.3 Installer
Performing an installation with an RRD requires knowing when

the token should be present in the disk and when it should be re-
moved. This could also require using multiple tokens at different
stages of the install, e.g. a binaries token and a configuration token.
For this reason, it is desirable for the installer to cooperate with
the administrator to simplify the installation process and make it
less error-prone. To achieve this, the installer should require as

little token changing as possible, while at the same time ensuring
the mutual exclusivity of mutable and immutable data. We observe
that the majority of data copied to the disk during installation is
immutable. Most mutable data, that residing in logs and home di-
rectories, is created some time after the base installation.

We wrote a proof of concept installer script to install a base sys-
tem onto an RRD. The installer’s main function is to differentiate
between data that should be mutable and immutable, as well as for-
mat portions of the filesystem as permanently mutable if necessary.
It is focused on ensuring the mutually exclusive installation of mu-
table and immutable data. This is accomplished by installing muta-
ble files and directories, asking the user for a token, and installing
any immutable files and directories. We also modified mke2fs
to label the appropriate data as permanently mutable. In this case,
all structures except inodes are made permanently mutable. Inodes
may need to become mutable to attacks in which inodes are pointed
at trojan files and directories.

The key design decision in creating the installer is what data
should be mutable or immutable. Making this decision is mainly
a matter of identifying and write-protecting possible vectors for
rootkit persistency. The MBR, boot loader, kernel and any kernel
modules must be immutable to prevent overwriting by kernel level
rootkits. Similarly, all libraries and binaries should be immutable to
prevent user level rootkits from installing trojan versions. Protect-
ing against overwriting is insufficient, as a rootkit may be stored
in some free space on the disk, and loaded into memory at boot
time. For this reason, any system configurations and startup scripts
should be made immutable, along with scripts defining repeatedly
executed tasks, e.g. cron. It may also be necessary to make
root’s home directory immutable to prevent a rootkit from being
restarted due to some habitual action by the administrator, such as
logging in. Header files such as those in /usr/include may be
immutable to prevent the insertion of malicious code that could be
compiled into applications built on the target system. Finer granu-
larities of labeling may be achieved on a case-to-case basis, at the
cost of administrative overhead.

The sequence of operations taken by our installer is as follows.
The user is prompted to enter the permanently immutable token,
at which point all file system metadata except inode tables are ini-
tialized. At this point the user removes the permanently immutable
token, and the inode tables are created. Any mutable data includ-
ing home directories is also written at this time. Finally, the user
is prompted to enter the immutable token and the base system is
copied to the disk. We evaluate the RRDs effectiveness in protect-
ing the integrity of the base system in section 4.4.

4. EVALUATION
Because storage is a significant bottleneck in most computer sys-

tems, we investigate the performance impact of the RRD’s security
measures. We accomplish this by running macro and micro bench-
marks on our prototype RRD, and measuring the effects of block
labeling on completion times and transactions per second. It is also
possible for the layout of data on disk to have a dramatic effect on
the size of BLOCK-LABELS, causing it to exceed the space con-
straints of the disk’s NVRAM. Another concern regarding the la-
beling of data is the amount of disk space lost due to label creep. To
better understand the effects of label creep, we measure the number
of blocks in the disk that become unusable after relabeling. Finally,
we investigate the ability of our prototype RRD to prevent rootkit
persistence in a real system. In our evaluation of RRDs, we attempt
to answer the following questions:

Configuration Completion (s) % Overhead 95% C.I.
nosec 501.1 — [497.0, 505.5]
sec 508.2 1.4% [505.3, 511.2]

Table 1: Average completion time in seconds for Postmark

Configuration TPS % Decrease 95% C.I.
nosec 235.1 — [233.2, 236.7]
sec 231.7 1.4% [230.3, 232.7]

Table 2: Average Transactions Per Second for Postmark

Component Total Time % Of Measured 95% C.I.
disk 132.9 59.0 % [130.6, 135.2]
net 78.4 34.8 % [77.0, 79.9]
security 14.1 6.2 % [12.6, 15.5]

Table 3: Average microbenchmark results showing the amount
of time spent on disk and network I/O and security operations
in the RRD for Postmark.

1. What are the performance overheads incurred by block label-
ing in the RRD?

2. How many disk blocks are lost due to label creep under a
normal usage scenario?

3. How well does BLOCK-LABELS scale with the amount of
labeled data written to disk?

4. Is the RRD effective in preventing rootkits from becoming
persistent?

The answers to these questions will guide our analysis, and direct
our future efforts at making RRDs more performance and resource
efficient.

4.1 Experimental Setup
All experiments were performed using our prototype RRD con-

sisting of a Linksys NSLU2 (slug) and a Seagate FreeAgent Pro
external USB 2.0 hard drive, as shown in Figure 3. The slug has
a 266MHz ARM IXP420 processor, and 32MB of RAM. The slug
ran the SlugOS 4.8 Linux distribution with a 2.6.21 kernel. The
base system was stored on a partition on the external disk, and no
swap space was used. The host system ran Ubuntu Linux with a
2.6.22 kernel on a 1.8 GHz Intel Core 2 Duo processor with 1 GB
of RAM. In each experiment, the host was connected to the slug
over a 100 MBps Ethernet link, or in the case of the scalability ex-
periments, a switch to allow the host to download system upgrades.

4.2 Performance
In order to understand the performance implications of the RRD’s

policy, we evaluate our experimental prototype under two work-
loads. The Postmark benchmark is a standard file and storage sys-
tem benchmark that performs transactions on a large group of many
small files. Postmark is intended to simulate a typical load on a
mail server, and is a good approximation of a random workload. In
order to test the RRD under its expected operating conditions, i.e.,
administrative operations, we perform a system install to show the
affects of block labeling for common administrative tasks.

4.2.1 Postmark
We used Postmark version 1.51, configured to create 20,000 files

of sizes ranging between 1KB and 20KB, and to perform 100,000
transactions. All other parameters were left to the default values.

Figure 3: The RRD prototype, consisting of a Linksys NSLU2 storage link, a Seagate Free Agent Pro external hard drive, and a USB
flash memory drive, connected to a hub for clarity. A token is plugged into the leftmost spot on the USB hub.

We ran the test 20 times, using a different random seed for each run
and unmounting the RRD between runs to ensure a cold file system
cache. The test was performed using two configurations: nosec in
which the RRD was connected to the host via a direct Ethernet link
and sec which was identical to nosec with the RRD’s security
measures enabled.

The completion times for each configuration as reported by Post-
mark are shown in Table 1 and the transactions per second in Fig-
ure 2, along with the 95% confidence intervals as calculated using
a T-distribution with 19 degrees of freedom. Being that Postmark
is a random workload, the majority of the time used by security op-
erations is spent searching and modifying the label data structure,
BLOCK-LABELS. This task becomes more costly as many small,
non-contiguous files are written to disk, increasing the size of the
structure. As will be seen in the following experiment, more con-
tiguous workloads can yield better performance.

To better understand the proportion of time spent on security
as compared with the other components of I/O, we recorded mi-
crobenchmarks from within netblockd. These contain the time
spent on disk access, network access and security. The disk ac-
cess measurement is the total time spent by netblockd executing
blocking read() and write() system calls to read and write
blocks to the external hard drive. These do not include the over-
head due to synchronization of the file system cache with the disk.
The network measurement is the time spent by netblockd on
blocking send() and recv() system calls to move data to and
from the host. The security measurement is the time spent labeling
blocks and performing access checks for write requests.

The results of the microbenchmarks are shown for the sec con-
figuration in Table 3. Note that these results do not account for the
time writing back pages from the slug’s page cache, and thus do
not sum to the total execution time for the benchmark. They do,

Configuration Completion (s) % Overhead 95% C.I.
nosec 289.3 — [288.3, 290.2]
sec 291.8 0.8 % [291.1, 292.6]

Table 4: Average completion times in seconds for FS creation

Configuration Completion (s) % Overhead 95% C.I.
nosec 443.8 — [437.3, 450.3]
sec 453.6 2.2 % [446.4, 461.0]

Table 5: Average completion times in seconds for the base sys-
tem copy

Component Total Time (s) % Of Measured 95% C.I.
disk 340.5 53.8 % [340.1, 340.9]
net 288.1 44.7 % [287.9, 288.5]
sec 16.4 2.5 % [16.1, 16.7]

Table 6: Microbenchmark results showing the amount of time
spent on disk and network I/O and security operations in the
RRD during the base system copy.

however, confirm that bus and disk access dominate security op-
erations in the RRD. Furthermore, even in an implementation of
the RRD within an enclosure that eliminated network overheads,
the disk latency dominates the security overhead, such that policy
lookups would not be a bottleneck.

4.2.2 System Install
Because the majority of labeling in an RRD occurs during ad-

ministrative operations, we perform a simple system install. To
achieve a worst-case scenario, we label all data in the system. For

upgraded new removed version
upgrade 1 820 170 85 6.10
upgrade 2 907 185 33 7.04

Table 7: The number of packages modified in each upgrade.

each run of the installation, we formatted the RRD with the ext2
file system and copied Ubuntu desktop Linux version 6.06 to the
RRD from the host’s hard disk. While this does not account for all
activities of a typical system install, such as extracting archives and
creating configurations, it does capture the I/O intensive operation
of writing the system to the disk. The base system, which consisted
of 949,657 files, was installed on a 100GB partition on the RRD.
We used the same two configurations as in the previous experiment.

The completion times for FS creation on each configuration as
recorded by the time command are shown in Table 4, and base
system copy time in Table 5. In the case of contiguous raw I/O,
as is seen in FS creation, block labeling and policy checking ac-
counts for less than 1% of the completion time. This is due to
the small size of BLOCK-LABELS, keepings search and insertion
times short. The installation portion of the workload shows a larger
overhead than FS creation due to the increasing size of BLOCK-
LABELS as larger portions of the system are written to disk. We
further investigate the growth of BLOCK-LABELS in section 4.3.

The results of the microbenchmarks for the System Install are
shown in Table 6. Under the more contiguous workload of system
installation, the percentage of overhead due to security operations
is less than half that of the random workload. Note that in this case,
disk I/O has also improved due to the large amount of contiguous
writes.

4.3 Scalability
As explained above, some blocks in an RRD may become unus-

able due to label creep. We will show that the number of blocks lost
in this way represents only a small fraction of the disk in the worst-
case scenario. We do this by measuring the difference between
the number of disk blocks used by the file system and the number
of labeled blocks during common administrative maintenance on
the RRD’s host system. Because the RRD maintains labels for po-
tentially every block on the disk, we need to demonstrate that the
amount of space overhead used for these labels does not become
unreasonable. It is important that the space needed to store labels
represent a small percentage of the total data on the disk so that
RRDs may scale with the increasing capacities of magnetic storage
mediums.

4.3.1 Measuring Label Creep
In this test, we perform several common administrative tasks to

simulate conditions under which labeling would occur on the RRD.
We first install a file system and base OS as described in the pre-
vious experiment. We then reboot the host system, mounting the
RRD as the root partition, and perform two full distribution up-
grades: from 6.06 to 6.10 and from 6.10 to 7.04. The numbers of
packages modified in each of these upgrades is shown in Table 7.
At each of these four steps, we record the number of disk blocks
used by the file system, and the number of blocks labeled by the
RRD. We performed this test with two file systems, ext2 and ext3,
which were chosen for their popularity as well as to determine the
affects of journaling on label creep.

The results for both file systems are shown in Figure 4. ext3 be-
haves the same as ext2 with the exception of a constant increase of
32,768 blocks to both the used and labeled blocks. This constant

increase is due to the journal, which was labeled as permanently
mutable at file system creation time. While the overhead due to la-
bel creep in both cases is roughly 10% of labeled data, it represents
less than 1% of the total space on the partition. Because we tested
the worst-case scenario by labeling all data in the base system, we
have shown that in the worst case, label creep does not waste sig-
nificant disk space.

4.3.2 Label Space Constraints
We now evaluate the space efficiency of the RRD’s label data

structure as described in section 3.1.1. We are mainly concerned
with the size of the BLOCK-LABELS structure relative the number
of labeled blocks. We perform the same tests as in the previous
experiment, recording both the size of the labeled data and the size
of BLOCK-LABELS at each step of FS creation, base copy, upgrade
1 and upgrade 2.

The results are shown in Figure 5. From this figure, two things
are evident. First, the label data structure is nearly three orders of
magnitude smaller than the number of labels it represents. The la-
bel data structure also grows with a slower constant rate than the
number of labeled blocks for the given workload. The second note-
worthy characteristic of these results is that while the number of
labeled blocks is larger in ext3 than ext2 by the constant size of the
journal, BLOCK-LABELS remains completely unaffected. This is
because the journal is represented by a single range, labeled as per-
manently immutable at FS creation time. In our implementation of
BLOCK-LABELS, every range is 12 bytes in size, making its maxi-
mum size less than 40 KB after the second upgrade, while the size
of the system on disk was nearly 4 GB.

4.4 Security
In order to test the ability of our prototype to correctly protect

immutable data, we install a rootkit on a system booted from the
prototype RRD, and verify that it fails to become persistent. We
chose the Mood-NT rootkit [11], which is a persistent rootkit for
Linux. Mood-NT works by trojaning the system call table. It can
hide files, processes and network connections, as well as discover
the location of the system call table for different kernel versions.
Mood-NT gains persistence by replacing /sbin/init with its
own initialization program. Upon reboot, this program installs the
appropriate hooks in the system call table, and runs a backed up
version of init to initialize the system as usual. This backup is
hidden by trojan versions of the stat system call.

We created a base system using our installer script, which was
configured to make all system binaries including init immutable,
and rebooted the host machine from the RRD. Inspection of the
system call table revealed that specific system calls had been re-
placed with malicious versions. It was apparent however, that the
attempt to replace /sbin/init had failed due to a file system er-
ror. We rebooted the target machine and inspected the system call
table for any signs that the rootkit had reinstalled itself. No sys-
tem calls had been replaced, and there was no backed up version
of init. We verified that the backup was not in its intended lo-
cation by rebooting from the host machines internal hard disk, and
searching the suspect partition on the RRD. From these results we
conclude that the prototype RRD successfully prevented the rootkit
from becoming persistent.

Given that the prototype RRD has been shown to successfully
protect immutable data from writing in the absence of the appro-
priate token, we can safely generalize the set of persistent rootkits
protected against by the prototype to all those that attempt to over-
write immutable data. This includes all data labeled immutable at
installation time by the installer script as described above. Rootk-

 0

 500

 1000

 1500

 2000

mkfs copy base upgrade 1 upgrade 2

T
ho

us
an

ds
 o

f B
lo

ck
s

Blocks Used (ext2)
Blocks Used (ext3)

Blocks Labelled (ext2)
Blocks Labelled (ext3)

Figure 4: Comparison of used blocks versus labeled
blocks

100

101

102

103

104

105

106

mkfs copy base upgrade 1 upgrade 2

N
um

be
r

of
 B

lo
ck

s
or

 R
an

ge
s

Ranges (ext2)
Ranges (ext3)

Blocks Labelled (ext2)
Blocks Labelled (ext3)

Figure 5: The number of ranges in BLOCK-LABELS
compared with number of labeled blocks

its that normally overwrite files protected by our prototype system
include t0rn which overwrites common utilities such as netstat and
ps [39], Suckit, which also overwrites /sbin/init, and Adore,
which attempts to create files in /usr/lib and /usr/bin.

To better understand the scope of rootkits that write data to files
normally labeled as immutable on an RRD, we examined a pop-
ular rootkit-scanning program to see which files and directories it
scans for evidence of rootkits. We chose chkrootkit [41], a
collection of scripts that scan for rootkits on a variety of UNIX
style systems include Linux, BSDs, Solaris and HP-UX. Our ex-
amination of chkrootkit version 0.47 revealed over 150 files
and directories, labeled as immutable by the RRD, were scanned
for modification by 44 known rootkits. chkrootkit performs
two main types of checks. It inspects binary and configuration files
for the presence of strings normally present in trojaned versions,
and it checks for new files created by rootkits in system directories.
The magnitude of files and directories examined by chkrootkit
shows that RRDs can protect a large set of data normally tampered
with by rootkits.

5. DISCUSSION

5.1 System Tokens and atime
It is advantageous for the system partition of the filesystem to

have its files protected through an administrative token. Without
the token in place, these files may not be overwritten. A challenge
comes with the use of the atime attribute for UNIX-based filesys-
tems, however. Consider, for example, an extended Linux filesys-
tem, e.g., ext2. When binaries are installed to the RRD with an
installed token, both the file’s blocks and its associated metadata
blocks will be labeled with the token. In a Linux system, whenever
a file is accessed, regardless of whether it is modified or otherwise
changed, the time it was accessed, or atime, is affected. Because
the administrative token is not meant to be used during regular sys-
tem operation, metadata blocks associated with any programs writ-
ten under the token will not be writable. For example, if Firefox is
written under an administrative token and it is subsequently opened
by a regular user, the inode’s atime attribute will not be refreshed.
Generally, atime is seen as a major detriment to performance [9]
and in the Linux 2.6 kernel it is possible, and common, to disable
atime altogether by mounting the filesystem with the noatime at-

tribute.3 Disabling atime does break POSIX compliance but the
number of programs affected by the lack of atime is small; system
administrators should verify that their programs run properly in the
absence of atime before committing to this change.

5.2 Filesystem Modification
While an RRD will function with a variety of current, unmodi-

fied filesystems, there are some small filesystem modifications that
could help to improve the interaction between the file and stor-
age layers. We consider the inode descriptor table in a UNIX-like
filesystem. There are many tens of thousands of descriptor blocks
when a filesystem such as ext2 is installed on a modern hard drive,
and subsequently, millions of inodes are capable of being accessed.
If a previously mutable inode descriptor block is written while a to-
ken is present, the block will become immutable under that token.
Subsequently, if there is a write request and free inode descriptors
are available in the block, the filesystem may attempt to write data
to the block. This will fail if the token is not present, and the filesys-
tem will have no knowledge that the write failed because of a lack
of access privileges, but would rather be a message such as “BAD
BLOCK”.

A small change to the filesystem could be made such that when
the error message is received, the request is not retried but rather
a different (potentially non-contiguous) block from the inode de-
scriptor table is chosen. In addition, the filesystem often inter-
sperses write requests across multiple inode descriptor blocks. A
very small change that favors contiguous allocation of inodes will
minimize the number of descriptor blocks that will be labeled in the
event of a write request. A file system tool that instructs journaling
file systems such as ext3 to write all changes in the journal to disk,
would prevent write denied errors from the disk when attempting to
sync journal blocks to labeled disk blocks after the token has been
removed.

5.3 Maintenance and Usability
Performing administrative and maintenance tasks on RRDs is

hampered by the necessity of not trusting the operating system.
This is a model in stark contrast to what is currently accepted,
where disk utilities that run through the operating system provide
easy access to administrative functions. Consider, for example,
the task of duplicating an RRD token for purposes of redundancy
3The NTFS filesystem has a similar access time
check, which may be stopped by modifying the
NtfsDisableLastAccessUpdate registry key.

or backup. In a conventional system, this could occur through a
program run by the user that presents a graphical user interface,
guiding the user step by step through the required functionality.
Unfortunately, any opportunity for the operating system to con-
trol functions on the disk is an opportunity to incorrectly label data
and cause privilege escalation. As a result, maintenance operations
must be performed in a manner that allows for direct interfacing
with the RRD without the use of the OS as an intermediary. A non-
exhaustive list of tasks that the RRD may be directly called upon to
perform includes the following:

• Token cloning and disk backup

• Revocation of existing tokens and token escrow

• Large-scale token management and initial RRD configura-
tion

Below, we present some potential solutions to address or miti-
gate some of these issues. These investigations are preliminary and
understanding them in greater detail is an ongoing research initia-
tive. We assume that the RRD has at least two available slots for the
insertion of USB tokens, and that it is shipped with two additional
tokens: a “backup” token and an “unlabel” token.

5.3.1 Token Duplication
To avoid reliance on the OS, one potential solution for token du-

plication is to ensure that the RRD has two available USB slots for
tokens to be inserted. Then, the token to be duplicated is inserted in
one slot, while a blank token is inserted in the other slot. Sensing
the blank token, the RRD duplicates the contents of the first token
onto the second.

5.3.2 Backup
With the availability of token duplication, backup without use of

the OS is simplified. Backing up data on an RRD is now a matter of
duplicating the backup token, retrieving another empty RRD of the
same capacity, connecting the two devices together, and inserting a
backup token in each drive. A block copy will then be performed
along with a transfer of metadata between drives. Because this is a
block copy, the geometry of the disks does not have to be identical.
We are investigating the problem of backing up a source drive to a
larger destination drive that may incorporate the backup data while
simultaneously being able to store other information.

5.3.3 Revocation
The unlabel token comes into use if a label is to be revoked from

the disk, e.g., multiple users use the disk and label particular files
as immutable with their own token, and a revocation occurs. By
inserting the token of the revoked user4 along with the unlabel to-
ken, all block labels associated with the token will be erased from
the RRD’s metadata. As a result, these blocks will become mutable
and all of the data may be reclaimed.

5.3.4 Large-Scale Installations and Upgrades
In environments with many homogeneous machines, performing

upgrades with a single hardware token is at best cumbersome and
at worst infeasible, necessitating an alternative approach. A com-
mon method for rapidly deploying software to large numbers of
machines is disk imaging or cloning. Our proposed solution calls
for a single master machine to broadcast instructions to other RRDs

4We assume that the system administrator has created a duplicate
copy of this token.

through a channel that does not involve the OS. For example, soft-
ware may be installed and configured on a single archetypal ma-
chine that is trusted. This machine’s hard disk image is then simul-
taneously copied to many clone machines. Mutable data may be
imaged to these clone machines, but when the token to allow mod-
ification of immutable data is inserted into the archetypal RRD,
it broadcasts as message to the clone RRDs over a shared medium,
such as wirelessly or over a USB bus, to allow writing of immutable
blocks and labeling them appropriately. When the token is removed
from the archetypal RRD, another message is broadcast that pre-
vents further information from being labeled immutable. A similar
process is followed when the archetypal system is to be upgraded.

5.4 Considerations for Windows Systems
RRDs can maintain their independence of operating systems by

ensuring the correct partitioning of mutable versus immutable files
during installation and upgrading of the operating system and its
applications. While we have focused on a Linux implementation,
an RRD solution would also be suitable for Windows installations.
The layout of immutable files differs between Windows and UNIX-
type OSes, with system-critical files often residing in the \Windows
and \Windows\System32 directories, among others. While the
installation process on a Windows system would require some small
alterations such that immutable files were installed after the token
was installed in the disk, the changes in this sense are similar to
those required with a UNIX distribution and could be managed in
much the same way. The same is true of using applications such as
Windows Update to update the operating system; as many system-
critical upgrades require a reboot already, the change from a user’s
standpoint would be fairly small.

Unlike in a UNIX-type system, configuration and other param-
eters are centralized in the Windows registry. The registry is not a
single database, however; it is split into a number of sections, called
hives, which localize functionality. For example, the HKEY_
LOCAL_MACHINE hive stores global settings, while HKEY_
CURRENT_USER stores settings specific to a particular user. These
settings are stored in binary files in specific portions of the oper-
ating system. Notably, HKEY_LOCAL_MACHINE has its settings
stored in a set of files in the \System32\Config directory that
are associated with subkeys dealing with security and software set-
tings among others. Because these files may be accessed separately
from other registry entries, these files may be marked immutable,
as they affect the entire system operation in much the same way as
files within the /etc hierarchy, without requiring reboots for other
less-critical registry operations.

Windows Vista supports registry virtualization [37], where ap-
plications that require access to read-only settings, such as system
registry settings, can be remapped to locations that do not affect
the entire system. In a similar manner, some applications made
to interoperate with Windows Vista and older versions of Windows
support application virtualization, where all of an application’s reg-
istry operations are remapped to another location, such as a file in
a user’s space. Through these methods, applications may be ac-
cessed and upgraded without accessing system-critical portions of
the registry and requiring changing of immutable files.

6. RELATED WORK
Rootkits themselves are not used to exploit a system, but are of-

ten used in conjunction with exploits to maintain a persistent pres-
ence on a system after it has been compromised. In this sense, they
often share commonalities with programs such as Trojan horses [59].
Software to exploit systems has been a topic of extensive and ongo-
ing research. Tools that generate exploits are readily available [36],

and defending against malicious code, particularly if it is poly-
morphic, is extremely difficult. Identifying polymorphic viruses
bounded in length has been shown to be NP-complete [55], while
modeling the polymorphic attacks (such as polymorphic blending
attacks [14]) requires exponential space [52]. The transmission
vector for these exploits is often a worm [53], which can compro-
mise large numbers of machines in very short time periods [57].

Numerous proposals to defend against rootkits have varied in
their complexity and coverage. Signature-based schemes such as
chkrootkit [41] are limited in that they rely on the operating sys-
tem to correctly scan for rootkits, which may have subverted the
OS to protect against these defenses. Rootkit scanners that are im-
plemented as kernel modules (e.g., rkscan) [2] provide better pro-
tection, but can only detect a rootkit when it is present, potentially
allowing it to have subverted the kernel to protect against these
scanners. Kruegel et al. [30] present a scheme to detect rootkits
by checking kernel modules at load time, but this does not protect
against a kernel code injection that bypasses the module loader.
Once the rootkit is installed, it can modify the boot sequence, which
is prevented in our scheme. Detection is always optimal, but our
proposal provides a solution in the cases where we cannot prevent
a kernel compromise. General malware tracking schemes such as
Panorama [61] may be useful for preventing rootkit installation but
exact a very heavy performance penalty.

Cryptographic file systems such as CFS [5], TCFS [7], and
CryptFS [62], provide data protection through encryption at the file
system level, allowing users to encrypt at the granularity of files and
directories. Other schemes that provide volume-based encryption,
e.g., SFS [15, 35] operate transparently to the user but do not pro-
vide granularity at a file or directory level. Our proposal for RRDs
calls for securing data at the block level, below the file system. Se-
curity of data below the file system has been an area of significant
research, particularly with the advent of network-attached disks
that accept direct block reads and writes. Network-attached secure
disks (NASD) [16, 17] sought to associate metadata with on-disk
data through a server. Schemes such as SNAD [38], which seek
to secure network attached disks, or SNARE [63], which provides
key distribution across multiple storage devices, require the use of
an ancillary metadata or authorization server. SCARED [46] pro-
vides data integrity but not at the block layer, so operations cannot
be performed by the disk; Oprea provides integrity at the block [43]
and file system layer [42], both relying on correct workload char-
acterization to parameterize an entropy threshold, and requiring a
source of trusted storage. Aguilera et al. [1] consider block-based
capabilities that rely on access control at a metadata server. All
of these solutions provide cryptographic services but do not protect
the operating system against exploits. Plutus [25] considers the idea
of the storage system being malicious and provides block-based ac-
cess where management is performed by clients of the disk, while
SiRiUS [18] and SUNDR [32] provide services at the file system
level. These approaches, however, are concerned with protecting
the clients against malicious data stores, while in our proposal, we
are concerned with protecting the client by protecting the data it-
self.

The concept of storage that is independently secured was ex-
plored by Strunk et al. [58]. In this model, the focus is on objects
that act as capabilities, in a similar manner to NASD but with a
focus on intrusion detection [45] and recovery from these types of
attacks, through the use of on-disk audit logs and primarily con-
sidering versioning of objects. Our proposal differs in that both
storage and enforcement of policies is performed within the disk,
forming a smaller security perimeter.

7. CONCLUSIONS
This paper has detailed the design, operation and evaluation of

rootkit resistance disks (RRD). RRDs label immutable system bina-
ries and configuration during initial system installation and upgrades–
an operation only available when a physical administrator token is
plugged into the disk controller USB interface. Any attempt to
modify these immutable blocks when the administrator token is
not present, i.e., during normal operation of the operating system,
is blocked by the disk controller. In enforcing immutability at the
disk controller, we prevent a compromised operating system from
infecting its on-disk image. Thus, while a rootkit can infect the sys-
tem, the RRD will prevent it from becoming persistent. Our per-
formance evaluation shows that the overheads associated with the
RRDs are low–as little as 1.5% overhead was seen in the I/O inten-
sive postmark benchmarks, and 1% or less during initial filesystem
system creation. We further validated our approach by installing
a real-world rootkit on an RRD-enabled system and were able to
prevent the malware from infecting the on-disk system image and
recover the OS into a safe state.

Several areas must be investigated in making this approach ap-
propriate for general use. First, tighter integration between the in-
stall programs and the RRD is needed. In this, we need to more sys-
tematically identify the parts of the operating system that should be
immutable. Second, integration with intelligent commodity disks
over other interfaces such as SCSI or IDE/ATA is needed. While
our performance evaluation indicates that such integration may not
change the performance footprint much, it is essential for large or
high-value systems that the performance/security tradeoffs be care-
fully mapped and system parameters selected. Finally, we need
explore the usability of administrator tokens as a method for en-
forcing security. In particular, we need to know how such a tool
will be used by those in enterprise and home environments, and
find ways to prevent their improper use, e.g., disallowing system
booting when the token is present. Answers to these open ques-
tions will inform how such a simple mechanism can measurably
protect real systems against rootkits.

Acknowledgements
We would like to thank William Enck for his ideas and advice and
Tim Rausch for his assistance and support. We would also like
to thank our anonymous reviewers for their valuable comments and
advice. This work is supported by the National Science Foundation
under award HECURA-0621429 and by Seagate. The views and
conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies,
either expressed or implied, of NSF, Seagate, The Pennsylvania
State University, or the U.S. government.

8. REFERENCES
[1] M. K. Aguilera, M. Ji, M. Lillibridge, J. MacCormick,

E. Oertli, D. Andersen, M. Burrows, T. Mann, and C. A.
Thekkath. Block-Level Security for Network-Attached
Disks. In Proceedings of the 2nd USENIX Conference on
File and Storage Technologies (FAST’03), San Francisco,
CA, Apr. 2003.

[2] S. Aubert. rkscan: Rootkit scanner for loadable kernel
module rootkits. http://www.hsc.fr/ressources/
outils/rkscan/index.html.en, Oct. 2002.

[3] S. Baker and P. Green. Checking UNIX/LINUX Systems for
Signs of Compromise, May 2005.

[4] A. Bellissimo, J. Burgess, and K. Fu. Secure software
updates: disappointments and new challenges. In

Proceedings of USENIX Hot Topics in Security (HotSec),
July 2006.
http://prisms.cs.umass.edu/~kevinfu/
papers/secureupdates-hotsec06.pdf.

[5] M. Blaze. A Cryptographic File System for UNIX. In
Proceedings of the 1st ACM Conference on Computer and
Communications Security (CCS’93), Fairfax, VA, USA, Nov.
1993.

[6] J. Butler and G. Hoglund. VICE–Catch the Hookers! In
Black Hat 2004, Las Vegas, NV, July 2004.

[7] G. Cattaneo, L. Cauogno, A. D. Sorbo, and P. Persiano. The
design and implementation of a transparent cryptographic
file system for UNIX. In Proceedings of the 2001 USENIX
Annual Technical Conference, Boston, MA, USA, June 2001.

[8] K. Chian and L. Lloyd. A Case Study of the Rustock Rootkit
and Spam Bot. In Proceedings of the 1st USENIX Workshop
on Hot Topics in Understanding Botnets (HotBots’07),
Cambridge, MA, USA, Apr. 2007.

[9] J. Corbet. Once Upon atime.
http://lwn.net/Articles/244829/, Aug. 2007.

[10] M. D. Corner and B. D. Noble. Zero-Interaction
Authentication. In Proceedings of ACM MOBICOM, Atlanta,
GA, Sept. 2002.

[11] DarkAngel. Mood-NT.
http://darkangel.antifork.org/codes.htm.

[12] J. G. Dyer, M. Lindermann, R. Perez, R. Sailer, L. van
Doorn, S. W. Smith, and S. Weingart. Building the IBM
4758 Secure Coprocessor. IEEE Computer, 39(10):57–66,
Oct. 2001.

[13] E. Filiol. Concepts and future trends in computer virology,
2007.

[14] P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee.
Polymorphic Blending Attacks. In Proceedings of the
USENIX Security Symposium, Vancouver, BC, Canada, Aug.
2006.

[15] K. Fu, M. F. Kaashoek, and D. Mazières. Fast and secure
distributed read-only file system. ACM Trans. Comput. Syst.,
20(1):1–24, Feb. 2002.

[16] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang,
H. Gobioff, C. Hardin, E. Riedel, D. Rochberg, and
J. Zelenka. A Cost-Effective, High-Bandwidth Storage
Architecture. In Proceedings of the 8th ACM Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS-VIII), San Jose, CA, USA, Oct.
1998.

[17] G. A. Gibson, D. F. Nagle, K. Amiri, F. W. Chang,
E. Feinberg, H. Gobioff, C. Lee, B. Ozceri, E. Riedel, and
D. Rochberg. A case for network-attached secure disks.
Technical Report CMU-CS-96-142, Carnegie Mellon
University, Pittsburgh, PA, USA, Sept. 1996.

[18] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh.
SiRiUS: Securing Remote Untrusted Storage. In Proceedings
of the 10th ISOC Symposium on Network and Distributed
Systems (NDSS’03), San Diego, CA, USA, Feb. 2003.

[19] J. B. Grizzard. Towards Self-Healing Systems:
Re-establishing Trust in Compromised Systems. PhD thesis,
Georgia Institute of Technology, 2006.

[20] T. C. Group. Stopping Rootkits at the Network Edge,
January 2007.

[21] Halflife. Abuse of the Linux Kernel for Fun and Profit.
Phrack, 7(50), Apr. 1997.

[22] D. Harley and A. Lee. The Root of All Evil? - Rootkits
Revealed. http:
//www.eset.com/download/whitepapers/
Whitepaper-Rootkit_Root_Of_All_Evil.pdf,
2007.

[23] J. Heasman. Implementing and Detecting and ACPI BIOS
Rootkit. In Black Hat Federal 2006, Washington, DC, USA,
Jan. 2006.

[24] G. Hoglund and J. Butler. Rootkits: Subverting the Windows
Kernel. Addison-Wesley, 2006.

[25] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and
K. Fu. Plutus: Scalable Secure File Sharing on Untrusted
Storage. In Proceedings of the 2nd USENIX Conference on
File and Storage Technologies (FAST’03), San Francisco,
CA, Apr. 2003.

[26] B. Kauer. OSLO: Improving the security of Trusted
Computing. In Proceedings of the 16th USENIX Security
Symposium, Boston, MA, USA, Aug. 2007.

[27] G. H. Kim and E. H. Spafford. Experiences with Tripwire:
Using Integrity Checkers for Intrusion Detection. Technical
Report CSD-TR_94-012, Department of Computer Sciences,
Purdue University, West Lafayette, IN, Feb. 1994.

[28] S. T. King, P. M. Chen, Y.-M. Wan, C. Verbowski, H. J.
Wang, and J. R. Lorch. SubVirt: Implementing malware with
virtual machines. In Proceedings of the 2006 IEEE
Symposium on Security and Privacy, Oakland, CA, May
2006.

[29] G. Kroah-Hartman. udev – A Userspace Implementation of
devfs. In Proceedings of the Ottawa Linux Symposium
(OLS), Ottawa, ON, Canada, July 2002.

[30] C. Kruegel, W. Robertson, and G. Vigna. Detecting
Kernel-Level Rootkits Through Binary Analysis. In
Proceedings of the Annual Computer Security Applications
Conference (ACSAC), Tuscon, AZ, Dec. 2004.

[31] M. Lauer. Building Embedded Linux Distributions with
BitBake and OpenEmbedded. In Proceedings of the Free and
Open Source Software Developers’ European Meeting
(FOSDEM), Brussels, Belgium, Feb. 2005.

[32] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure
Untrusted Data Repository (SUNDR). In Proceedings of the
6th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 2004), San Francisco, CA, Dec. 2004.

[33] Linksys. NSLU2 Product Information.
http://www.linksys.com/servlet/
Satellite?childpagename=US%
2FLayout&packedargs=c%3DL_Product_C2%
26cid%3D1118334819312&pagename=Linksys%
2FCommon%2FVisitorWrapper, Apr. 2008.

[34] P. Loscocco and S. Smalley. Integrating Flexible Support for
Security Policies into the Linux Operating System. In
Proceedings of FREENIX ’01, Boston, MA, June 2001.

[35] D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel.
Separating key management from file system security. In
Proceedings of the 17th ACM Symposium on Operating
Systems Principles (SOSP’99), pages 124–139, Kiawah
Island, SC, USA, Dec. 1999.

[36] Metasploit Development Team. Metasploit Project.
http://www.metasploit.com, 2008.

[37] Microsoft. Registry Virtualization (Windows).
http://msdn.microsoft.com/en-us/library/
aa965884.aspx, June 2008.

[38] E. L. Miller, W. E. Freeman, D. D. E. Long, and B. C. Reed.
Strong Security for Network-Attached Storage. In
Proceedings of USENIX FAST’02, Monterey, CA, USA, Jan.
2002.

[39] T. Miller. Analysis of the T0rn Rootkit. http:
//www.securityfocus.com/infocus/1230, Nov.
2000.

[40] N. Murilo and K. Steding-Jessen. Métodos Para Detecção
Local de Rootkits e Módulos de Kernel Maliciosos em
Sistemas Unix. In Anais do III Simpósio sobre Segurança em
Informática (SSI’2001), São José dos Campos, SP, Brazil,
Oct. 2001.

[41] N. Murilo and K. Steding-Jessen. Chkrootkit v. 0.47.
http://www.chkrootkit.org/, Dec. 2007.

[42] A. Oprea and M. K. Reiter. Integrity Checking in
Cryptographic File Systems with Constant Trusted Storage.
In Proceedings of the 16th USENIX Security Symposium,
Boston, MA, USA, Aug. 2007.

[43] A. Oprea, M. K. Reiter, and K. Yang. Space-Efficient Block
Storage Integrity. In Proceedings of the 12th ISOC
Symposium on Network and Distributed Systems Security
(NDSS’05), San Diego, CA, USA, Feb. 2005.

[44] PandaLabs. Quarterly Report (January - March 2008).
http://pandalabs.pandasecurity.com/
blogs/images/PandaLabs/2008/04/01/
Quarterly_Report_PandaLabs_Q1_2008.pdf?
sitepanda=particulares, Mar. 2008.

[45] A. G. Pennington, J. D. Strunk, J. L. Griffin, C. A. N. Soules,
G. R. Goodson, and G. R. Ganger. Storage-based Intrusion
Detection: Watching storage activity for suspicious behavior.
In Proceedings of the 12th USENIX Security Symposium,
Washington, DC, USA, Aug. 2003.

[46] B. C. Reed, M. A. Smith, and D. Diklic. Security
Considerations When Designing a Distributed File System
Using Object Storage Devices. In Proceedings of the 1st
IEEE Security in Storage Workshop (SISW’02), Greenbelt,
MD, USA, Dec. 2002.

[47] J. Rutkowska. Detecting Windows Server Compromises. In
Proceedings of the HiverCon Corporate Security
Conference, Dublin, Ireland, Nov. 2003.

[48] A. Sabelfeld and A. C. Myers. Language-based Information
Flow Security. IEEE Journal on Selected Areas in
Communication, 21(1):5–19, Jan. 2003.

[49] M. Sivathanu, V. Prabhakarn, F. I. Popovici, T. E. Denehy,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Semantically-Smart Disk Systems. In Proceedings of the 2nd
USENIX Conference on File and Storage Technologies
(FAST’03), San Francisco, CA, Apr. 2003.

[50] NSLU2 - Linux. http://www.nslu2-linux.org/
wiki/SlugOS/HomePage, 2008.

[51] D. Soeder and R. Permeh. eEye BootRoot. In Black Hat
2005, Las Vegas, NV, USA, July 2005.

[52] Y. Song, M. E. Locasto, A. Stavrou, A. D. Keromytis, and
S. J. Stolfo. On the Infeasibility of Modeling Polymorphic
Shellcode. In Proceedings of the 14th ACM Conference on
Computer and Communications Security (CCS’07),
Alexandria, VA, Oct. 2007.

[53] E. H. Spafford. The Internet worm program: An analysis.
ACM Computer Communication Review, 19(1):17–57, Jan.
1989.

[54] S. Sparks and J. Butler. Shadow Walker: Raising the Bar for
Windows Rootkit Detection. Phrack, 11(63), Aug. 2005.

[55] D. Spinellis. Reliable Identification of Bounded-length
Viruses is NP-Complete. IEEE Transactions on Information
Theory, 49(1):280–284, Jan. 2003.

[56] L. St. Clair, J. Schiffman, T. Jaeger, and P. McDaniel.
Establishing and Sustaining System Integrity via Root of
Trust Installation. In Proceedings of the 23rd Annual
Computer Security Applicatons Conference (ACSAC 2007),
Miami Beach, FL, Dec. 2007.

[57] S. Staniford, D. Moore, V. Paxon, and N. Weaver. The Top
Speed of Flash Worms. In Proceedings of the ACM Workshop
on Rapid Malcode (WORM), Washington, DC, Oct. 2004.

[58] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. N.
Soules, and G. R. Ganger. Self-Securing Storage: Protecting
Data in Compromised Systems. In Proceedings of the 4th
Symposium on Operating Systems Design and
Implementation (OSDI’00), San Diego, CA, USA, Oct. 2000.

[59] K. Thompson. Reflections on Trusting Trust.
Communications of the ACM, 27(8):761–763, Aug. 1984.

[60] P. Vixie. cron man page.
http://www.hmug.org/man/5/crontab.php.

[61] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda.
Panorama: Capturing System-wide Information Flow for
Malware Detection and Analysis. In Proceedings of the 14th
ACM Conference on Computer and Communications
Security (CCS’07), Alexandria, VA, Nov. 2007.

[62] E. Zadok, I. Badulescu, and A. Shender. Cryptfs: A
Stackable Vnode Level Encryption File System. Technical
Report CUCS-021-98, Columbia University, New York, NY,
USA, 1988.

[63] Y. Zhu and Y. Hu. SNARE: A Strong Security System for
Network-Attached Storage. In Proceedings of the 22nd
International Symposium on Reliable Distributed Systems
(SRDS’03), Florence, Italy, Oct. 2003.

