
Analyzing Network Traffic To Detect Self-Decrypting
Exploit Code ∗

Qinghua Zhang, Douglas S. Reeves, Peng Ning, S. Purushothaman Iyer
Cyber Defense Laboratory, Computer Science Department
North Carolina State University, Raleigh, NC 27695-8207

{qzhang2, reeves, pning, purush}@ncsu.edu

ABSTRACT
Remotely-launched software exploits are a common way for
attackers to intrude into vulnerable computer systems. As
detection techniques improve, remote exploitation techniques
are also evolving. Recent techniques for evasion of exploit
detection include polymorphism (code encryption) and meta-
morphism (code obfuscation). This paper addresses the
problem of detecting in network traffic polymorphic remote
exploits that are encrypted, and that self-decrypt before
launching the intrusion. Such exploits pose a great chal-
lenge to existing malware detection techniques, partly due
to the non-obvious starting location of the exploit code in
the network payload.

We describe a new method for detecting self-decrypting
exploit codes. This method scans network traffic for the
presence of a decryption routine, which is characteristic of
such exploits. The proposed method uses static analysis and
emulated instruction execution techniques. This improves
the accuracy of determining the starting location and in-
structions of the decryption routine, even if self-modifying
code is used. The method outperforms approaches that have
been previously proposed, both in terms of detection capa-
bilities, and in detection accuracy.

The proposed method has been implemented and tested
on current polymorphic exploits, including ones generated
by state-of-the-art polymorphic engines. All exploits have
been detected (i.e., a 100% detection rate), including those
for which the decryption routine is dynamically coded, or
self-modifying. The false positive rate is close to 0%. Run-
ning time is approximately linear in the size of the network
payload being analyzed.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Network]: General—
Security and protection; D.3.3 [Programming languages]:

∗This work is supported by the National Science Foundation
(NSF) under grant CNS-0627505.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS’07,March 20-22, 2007, Singapore.
Copyright 2007 ACM 1-59593-574-6/07/0003 ...$5.00.

Language Constructs and Features—Polymorphism

General Terms
Security

Keywords
Polymorphic, Exploit Code, Decryption, Detection, Static
Analysis, Emulation

1. INTRODUCTION
In recent years, malicious code has become an omnipresent

and dangerous threat to the Internet infrastructure. The
mono-culture property of the hardware and software makes
it possible to explore a single vulnerability to compromise
a large number of hosts. A typical example are the Inter-
net worms which are self-propagating and self-replicating.
Worms frequently use remote exploit code to intrude into a
vulnerable system attached to the Internet, and then com-
promise other vulnerable systems attached to the Internet.
The automatic nature of worms makes them virulent and
destructive. According to Computer Economics [2], the
estimated worldwide damages caused by three well-known
worms, which are Code Red, Nimda and Slammer worms in
year 2001, exceeded $4 billion. Detection of exploit code in
network traffic is a crucial task in stopping the spread of
worms.

Signature-based intrusion detection is the most popular
approach for detecting remote exploits that target vulner-
able hosts. Some well-known and very successful systems
include Snort [8] and Bro [7]. While signature-based intru-
sion detection has been very successful, these detection sys-
tems can be defeated by exploits that use advanced conceal-
ment techniques. Two important recent such techniques are
polymorphism, which makes use of exploit code encryption,
and metamorphism, which uses a variety of code obfuscation
techniques to confound static signature-checking.

Recently, there has been substantial research on defeat-
ing such concealment methods. Approaches that use static
analysis [23, 22, 10, 9] have shown promise in detecting a
specific and non-trivial class of polymorphic exploits. These
exploits target buffer overflow vulnerabilities, accounting for
more than 20% of the vulnerabilities reported by CVE [1].
This class of exploits contains program-like code that has
distinctive control flow and data flow characteristics that
can be detected. For instance, figure 1 shows a character-
istic structure of polymorphic exploits, produced by one of
the available exploit toolkits [5, 6, 4].

���������	
���������������� �������	������	

Figure 1: A typical structure of polymorphic exploit

codes on buffer overflow vulnerabilities

The effectiveness of such static analysis approaches de-
pends on how well the program-like payload (e.g. the de-
cryption routines) can be distinguished from a) non-code
data and from b) non-exploit code. There are several signif-
icant challenges. First, exploit code is often hidden inside
network traffic at a non-obvious starting location , and in-
terspersed with data (whether valid or not) [10]. Code bytes
cannot be distinguished from data bytes solely by the use of
disassembly, due to the compactness of Intel instruction set.
Second, exploit code that is “visible” (i.e., unencrypted) is
usually manually crafted, and does not follow the same con-
ventions as executable programs generated by a compiler.
For instance, hand-crafted exploit code may use overlapping
instructions, or self-modifying instructions, expressly for the
purpose of defeating static disassembly.

Available static-analysis approaches [9, 10, 22, 23] have
only addressed the above challenges to a limited degree.
They are not robust against exploits which employ static
analysis-resistant techniques such as self-modifying and in-
direct control transfer instructions [19], partly due to the
non-obvious starting location of the exploit code. The meth-
ods proposed by Toth and Kruegel [22] and Akritidis et al. [9]
focused on NO-OP sleds which may be missing in advanced
exploit code [12, 18]. The method used by Chinchani et
al. [10] to extract the control flow of the exploits is not re-
sistant to data injection attack. Wang et al. [23] proposed a
code abstraction method to distill useful instructions from
an instruction sequence to detect exploits. However the code
abstraction is based on a data-flow anomaly rule that an in-
struction referencing an undefined variable is redeemed use-
less. This is easily evaded by some obfuscation techniques.
For instance, two instructions referencing the same unde-
fined variable can still be useful, if they can be used to clear
the registers for initialization. If an attacker exploits this
property, most of their useful instructions would probably
not be detected by a chaining effect. In addition, none of
these approaches offer a mechanism to clearly identify the
starting location of the polymorphic exploit code in network
traffic.

Polychronakis et al. [19] proposed a method that uses in-
struction emulation to more effectively identify self-modifying
polymorphic exploit code than is possible with static anal-
ysis. Their approach does not, however, provide a compre-
hensive mechanism to identify the starting location of poly-
morphic exploit code in network traffic. The method will
be very slow if all potential starting locations are tried, but
simple heuristics for narrowing down the possible starts of
exploit code may miss some attacks.

In this paper we present a new method to detect self-
decrypting exploit code. The proposed method harnesses
static analysis and emulated instruction execution to find
the starting location and identify the instructions of the
polymorphic exploit code. Previous approaches [19, 10, 23,
22, 9] do not offer such capabilities. In addition, the pro-
posed method can detect polymorphic exploit code that is
self-modifying, which static analysis has previously been un-
able to detect.

The proposed method works by scanning the network traf-
fic for the presence of a decryption routine, which is char-
acteristic of such exploits. First, it identifies the possible
starting locations of a decryption routine by looking for a
form of GetPC code. This is a generally inevitable com-
ponent of the decryption routine, which is used to find the
absolute address of the encrypted exploit code. Second, it
finds the actual decryption instructions by a novel two-way
traversal of the code, as well as by using standard back-
ward data flow analysis. Third, it identifies self-modifying
decryption routines through emulated execution of already
found decryption instructions. Last, it verifies the detected
code is a decryption routine by checking whether it satisfies
two properties that are typical of such code.

The proposed method has been implemented and evalu-
ated against real polymorphic exploits produced by Metas-
ploit [4], and also those produced by polymorphic engines [5,
6]. It achieves a 100% detection rate on the polymorphic
exploits which use statically coded decryption routines. It
likewise has a 100% detection rate for decryption routines
that are self-modifying . The method was also tested on
typical network traffic not containing polymorphic exploits,
and on Windows executable files. The false positive rate
is approximately .0002% and .01% for these two categories,
respectively. We also measure the running time of our non-
optimized implementation. The running time is roughly lin-
ear in the size of the traffic being analyzed, and is between
1 and 2 MB/s.

The rest of this paper is organized as follows. Section
2 describes related work. Section 3 presents our method.
Section 4 demonstrates our evaluation. Section 5 gives the
attack analysis. Section 6 concludes the paper.

2. RELATED WORK
The two major approaches to detection of polymorphic

exploit code are static-analysis [10, 9, 22, 23] and emulation
[19]. These have been briefly described above. Two other
approaches for detection of polymorphic exploits in network
traffic are signature-based methods, and data mining meth-
ods. These are now briefly described.

Polygraph [16] and Hamsa [14] are examples of the signature-
based approach. These methods generate polymorphic worm
signatures by finding common invariant content substrings
among multiple polymorphic worm samples. This approach
requires a network traffic classifier to preselect suspicious
traffic for training. The detection and false positive rates
depend on the effectiveness of the classifier. If the back-
ground “noise” (network traffic not containing exploits, but
selected by the classifier) is significant, the accuracy can
be significantly reduced. Newsome et al. [17] presented an
attack that causes the signature learning approach to fail.
Nemean [25] is a method that uses protocol semantics to
group similar worm traffic, and that uses machine-learning
techniques to generate connection and session level signa-
tures. This approach requires detailed protocol specification
for every application protocol. It is also sensitive to back-
ground noise. In general, this category of methods has a
high maintenance cost, in the sense that signature reposi-
tories need to be constantly updated, as new polymorphic
variants are encountered.

The second category uses data-mining [18]. This approach
combines neural networks with a simple NO-OP sled detec-
tor (as used in [22]) to detect exploit code. The neural

network has to be carefully trained with negative and pos-
itive data sets, which highly affects its detection rates. In
practice, high quality training sets may be difficult to obtain
and keep updated.

There is considerable work on malware detection or pre-
vention at the host level. These methods provide insight
into the form of malware, and the run time environment. A
recent method named PolyUnpack [20] automatically iden-
tifies and extracts the hidden-code bodies of unpacking-
executing malware, with knowledge of the instance’s static
code model. Christodorescu et al [11] proposed to detect
malware through the use of semantic behavior models, called
templates. One of the presented templates models is the
decryption loop of polymorphic malware. However, this
method does not provide a way to model self-modifying de-
cryption loops. How to define a general semantic behav-
ior model remains an open problem. Sidiroglou et al. [21]
proposed an end-point architecture to automatically repair
software flaws to counter various attacks. This approach
requires information about the source code.

Work on static binary disassembly is also relevant to this
work. There are two widely used disassembly techniques.
The linear sweep method, which decodes bytes sequentially,
has difficulties distinguishing between embedded data and
actual instructions. Therefore it can be defeated by data in-
jection attacks, and by other attacks, such as the use of over-
lapping instructions. Figure 2(a) shows an example where
this is the case. Recursive traversal, which decodes bytes by
following the control flow of the program, can better deal
with such attacks. However, it requires the entry point of
the program to be known in advance. Moreover, the target
address of a branch instruction cannot always be statically
determined by recursive traversal. In this case, linear sweep
may recover more valid instructions. Kruegel et al. [13]
proposed an advanced disassembly technique. This method
used the program’s control flow graph and statistical tech-
niques to correctly identify a large fraction of the program’s
instructions. However, the assumptions of this method are
not fully compatible with the requirements for disassem-
bling code in network traffic, i.e the absent information of
program starting location. In addition, it does not correctly
handle code in which self-modifying and/or overlapping in-
structions are used.

3. THE PROPOSED METHOD
This section describes a network-level hybrid method for

the detection of polymorphic exploit code. First, the detec-
tion methods based on static binary code analysis [10, 23,
22, 9] can possibly identify the control flow and data flow
information of the exploit code. However they cannot well
handle static analysis resistant (i.e. self-modifying) poly-
morphic exploit code which will not reveal its actual form
until it is actually executed. Second, the detection method
based on emulated execution of network traffic [19] is doing
better in this aspect. However it will incur a high process-
ing overhead if each instruction sequence is executed. Simple
strategies to select possible instruction sequences for execu-
tion will miss some attacks.

We are motivated to explore whether it is possible to de-
tect such highly obfuscated polymorphic exploit code by
combining these two types of techniques.

We now first give an overview to the proposed method.

3.1 Overview of the Proposed Method
The overall idea is to scan the network traffic for the

presence of the decryption routine which is characteristic of
polymorphic exploit code. Static analysis is used to locate
the decryption routine inside the network traffic. Limited
emulation of instruction execution is performed to reveal
concealed components such as self-modifying instructions of
the decryption routine. Moreover, a heuristic approach is
explored to further increase the overall accuracy.

More specifically, a form of GetPC code is first looked for
as the basic means of locating the start of the decryption
routine. GetPC code is a generally inevitable component of
a decryption routine. As argued by Polychronakis et al. [19],
reliable exploit code should avoid any hard-coded absolute
addressing. Therefore, the decryption routine must have
some way to dynamically determine the address of the en-
crypted payload in the vulnerable program’s address space,
in order to modify it. This is accomplished by GetPC code,
which computes absolute addresses as offsets from the cur-
rent value of the program counter (the PC). The GetPC
code should be among the very few instructions that cannot
be self-modifying or concealed, and it also should be among
the very few first functional instructions of a decryption rou-
tine. Therefore, detection of GetPC code helps localize the
start of the decryption routine.

Then, the rest of the decryption routine is found by travers-
ing the bytes from where the GetPC code is found, and look-
ing for a loop in the control flow structure. Loops are likely
to occur in decryption routines for the simple reason that
decryption of a sequence of bytes is a very repetitive process.
Recursive traversal disassembly is generally useful enough to
derive the control flow structure if no complex static analysis
resistant techniques are involved. Otherwise, the task is ac-
complished by a novel two-way traversal and backward data-
flow analysis to more precisely pinpoint the non-concealed
instructions of the decryption routine, and by emulated in-
struction execution on already found instructions to reveal
the concealed component, i.e. the self-modifying part of the
decryption routine.

Finally, the detected code is verified to improve the over-
all accuracy. The proposed approach checks whether the
detected code satisfies two properties that we observe from
typical decryption routines. These properties have not been
used for this purpose previously.

We now describe the method in detail, starting with the
decryption routine localization.

3.2 Decryption Routine Localization
Generally speaking, a decryption routine is suspected if

the control flow structure shows the existence of a loop.

3.2.1 General Approach
Our general approach works by first finding the starting

point of the decryption routine and then using recursive
traversal to find the loop structure of the decryption rou-
tine.

Starting Point Localization
The first step is to find the starting instruction of the de-
cryption routine which is hidden within the network traffic.
This is done by scanning network traffic for candidate seed-
ing instructions of GetPC code. We now explain GetPC
code and seeding instructions.

GetPC code is a generally inevitable component of the

���������������������������������	�
��	�
�������

�����������������������������
�����

��������	������������� ���������

����������������������������������	�

��������	��������������������������	��

�������������	���
��� 	��!	�
!��"����

��������	���� ���������

#$�������%	���&�'	(���&���()

�������	������������������*������+

��������	�����������������������	��

�������������������������������,�	��

����������	
��� 	��"��	�

��������(��(�(

���������������������������((�	�
��	�

��������������������������'	�'�	�
��	�

���-����������������������*�	����

����������������������������	'

���+��	��	�����������������������

#$������%	���&�'	(���&���()

.�/ .�/

Figure 2: Disassembly of decryption routines for a) Countdown b) JmpCallAdditive encoders. In each figure, the left-

most column shows instructions’ addresses represented in hex format; the middle column shows the actual instruction

bytes; the rightmost column shows the decoded instructions. The underlined instructions are the seeding instruction,

the instruction for decrypting the encrypted exploit payload and the instruction for updating the address of encrypted

exploit payload. For both examples, a loop structure is presented. In figure a), instruction call 000A at address 0006

and pop esi at address 000C are the GetPC code of this example. Similarly, in figure b), instruction call 0002 at address

000E and pop esi at address 0002 are the GetPC code.

decryption routine. It is used to dynamically determine
the address of the encrypted payload in the vulnerable pro-
gram’s address space, in order to modify it. Polychronakis
et al. [19] identified two 1 feasible and easy forms of GetPC
code. One way is through a call instruction. Execution of
a call instruction pushes the return address (the PC) onto
the stack. The decryption routine when executed can easily
read this return address from the stack. The second way
is through a fnstenv instruction, which stores the current
FPU environment that includes the program counter of a
preceding FPU instruction, in an area of memory specified
by the instruction. Then the value of this program counter
can be read by a following instruction and used to compute
the absolute address of the encrypted payload. Examples of
GetPC code are shown in figure 2.

We term the call or fnstenv seeding instructions. A
seeding instruction stores a program counter (PC) of one
decryption routine instruction as the base address for later
instructions to compute absolute addresses of the encrypted
payload as offsets from the base address. Seeding instruc-
tions are the key instructions for GetPC code to work. The
number of candidate seeding instructions in the Intel in-
struction set is expected to be limited.

By scanning the network packet for the seeding instruc-
tion (call, fnstenv etc.) of GetPC code, the start of a
decryption routine can be coarsely located. Each such in-
struction found is treated as if it belongs to a decryption
routine.

Recursive Traversal To Detect Decryption Loop
Structure.
Recursive traversal is a standard disassembly technology. It
is robust against data-injection attacks, in which code is in-
terleaved with data. The proposed method uses it to find
the control flow structure of the decryption routine. Once
a loop is detected during recursive traversal, this is a candi-
date for a decryption routine. However, a recursive traversal
may be hindered by indirect addressing branch instructions,
and the loop structure can be hidden by self-modification
techniques. An enhanced approach can address these two

1M. Polychronakis et al. [19] also mentioned a third form
of GetPC code which is to exploit the structure exception
handling(SEH) mechanism of Windows. However they men-
tioned this technique is not feasible with advanced version
of Windows.

issues. The approach uses (a) two-way traversal and back-
ward data-flow analysis, and (b) a limited emulation of in-
struction execution.

3.2.2 Enhanced Approach
The enhanced approach deals with the two issues when

a self-modifying decryption routine is used and the indirect
addressing branch instruction is used.

Two-way Traversal and Backward Data Flow Anal-
ysis To Find Decryption Instructions.
The enhanced method uses both forward and backward traver-
sal of bytes from the seeding instruction to find the rest in-
structions of the decryption routine. Forward traversal, as
usual, recursively decodes the bytes by following the control
flow, starting at the seeding instruction. It can find the in-
structions that are data-flow dependent on the GetPC code.
This includes the instructions directly responsible for data
decryption. Backward traversal decodes bytes in a reverse
direction of the control flow, also starting at the seeding in-
struction. Backward traversal is needed since the seeding
instruction may not be the very first instruction of the de-
cryption routine, i.e. the initialization instructions. This
analysis step is quick if the seeding instruction is close to
the start of the decryption routine. Multiple instruction se-
quences could be found during a backward traversal due to
the self-synchronization property of the Intel instruction set
2. The enhanced method uses backward data flow analysis
to determine whether a backward traversal is demanded and
which instruction sequence found during such a traversal ac-
tually belongs to the decryption routine that exists before
the GetPC code.

First, the method performs forward traversal which starts
at the seeding instruction and follows the control flow to
dissemble the byte sequences.

Then, the method triggers a backward data flow analysis
if a target instruction, an instruction that is either (a) an in-
struction that writes to memory, or (b) a branch instruction
with indirect addressing, is encountered during the forward
traversal. When the target instruction is (a), it could be an
instruction used for decrypting the hidden loop or the en-
crypted payload. When the target instruction is (b), it could

2A set of bytes is self-synchronizing if it disassembles to the
same instruction sequence even if slightly different starting
points are chosen. Please refer [10] for more detail.

��	�
����
���������

��

��

��
�����������
�
� !��"

���#������������$
������������������������
%����$
����

���&���$������������������������������������ � �
��

���������������$��������������������������	��
��'�$"��
%

���������������$��������������������������
%���
��'�$"

���������������������� ������������ ��
��'��������"�!�

()�������*
��	� �
� �����+

��� ���

���	�
����
���������

���

���

��������������������������������������
�����������
�
� !��"

���#������������$
��������������������
%����$
����

���&���$�������������������������������� � �
��

���������������$�����������������������	��
��'�$"��
%

���������������$�����������������������
%���
��'�$"

���������������� ��
�����

��������
���$ ��� �����

()�������*
��	� �
� �����+

Figure 3: Disassembly of Self-Modifying decryption routine for ShikataGaNai encoder. a) Before Execution b) After

Execution. In each figure, the leftmost column shows instructions’ addresses represented in hex format; the middle

column shows the actual instruction bytes; the rightmost column shows the decoded instructions. The fnstenv instruc-

tion is the seeding instruction. The xor [ebx+15], edi] is the instruction for decrypting the self-modifying decryption

routine and encrypted exploit payload. Instruction fcmovb st(0), st(7) at address 0002, fnstenv 14/28byte[esp-0c] at

address 0006 and pop ebx at address 000F are the GetPC code of this example. The loop structure is revealed after

execution.

be an instruction to obfuscate the control flow. Either of the
instructions is significant. Backwards data-flow analysis is a
popular technique for program analysis [15]. Here we use it
to find instructions on which the target instruction has data-
flow dependency (i.e. we follow backwards the define−use
chain) in order to determine the operands (i.e. write-to ad-
dress and write-to value) of the target instruction. If all the
required variables have been defined till the seeding instruc-
tion, then there is no non-GetPC decryption routine code
that exists earlier than the seeding instruction. Otherwise,
there must be.

Finally, the method performs backward traversal on de-
mand, determined as described above. Backward traversal
decodes bytes in a reverse direction of the control flow. It
is implemented using breadth first search, starting at the
seeding instruction. First the set of instructions that di-
rectly reach the seeding instruction at byte offset i of the
input network traffic are found. This set will possibly con-
tain branch instructions whose target is the instruction at
offset i. The set may also contain non-branching instruc-
tions immediately preceding the seeding instruction. Then
instructions reaching instructions in this set are found, etc.
A branch instruction using indirect addressing is unlikely to
appear prior to the seeding instruction in the control flow for
the simple reason that the GetPC code must be executed
first. The same is true for self-modifying instructions.

It must be decided which instruction sequence found dur-
ing the backward traversal actually belongs to the decryp-
tion routine and exists before the GetPC code. Backwards
data-flow analysis is used again. To choose which instruc-
tion sequence contains these code, we pick one that defines
all the rest variables or is the longest of multiple qualified
instruction sequences.

Figure 3(a) is an example to illustrate this two-way traver-
sal and backwards data-flow analysis. First, forward traver-
sal is performed to decode the byte sequences, starting at
address 0006 where the seeding instruction fnstenv 14/28

byte[esp-0c] is found. The process is continued till instruc-
tion xor [ebx + 15], edi at address 0010, a target instruc-
tion, is encountered. Then a round of backward data flow
analysis is triggered to find previous instructions that deter-
mine the operands of this target instruction. ebx and edi

are variables of the operands of this target instruction. Their

values are defined by instruction pop ebx at address 000F

and mov edi, f35e0f78 at address 000A. Instruction pop

ebx reads a 4-byte value from the stack referenced through
register esp by default. The left task is to find the ac-
tual value stored at [esp] that will be used to define or
assigned to ebx through pop ebx. According to the seman-
tics of fnstenv, it will store the program counter (PC) of
a FPU instruction preceding it at twelve bytes from the ad-
dress specified. Hence, the PC is stored at [esp] in this ex-
ample. Finally, backward traversal is performed starting at
the seeding instruction. Hence instruction fcmovb st(0),

st(7) is easily found, according to the method described
above.

After constructing a chain of instructions through the two-
way traversal, the execution of instructions in the chain is
then emulated, as described below.

Detection of Self-modifying Decryption Routine.
Self-modifying decryption routines are detected by perform-
ing emulated execution of the already found decryption in-
structions. The purpose of this execution is to determine the
address to which the target instruction writes a value, or the
address to which the target instruction branches, depending
on the type of the target instruction. As far as the emula-
tion is concerned, the decryption code of the input network
traffic is mapped to a random virtual address space of the
vulnerable program that the exploit code targets.

The emulation is limited in the following way. Instruction
emulation proceeds until a decryption loop is detected, or
an illegal instruction is encountered. If a memory location
is modified that is within the emulated address space of the
code, this fact is noted. It is evidence for the existence of a
decryption routine. If the address of the target instruction
branches points to the flow itself, the forward traversal is
continued, otherwise it is stopped.

In a favorable situation, emulated instruction execution
only occurs for a small number of instructions. This is be-
cause execution ends once a self-modifying decryption loop
is revealed. For a decryption loop not using self-modifying
techniques, only one traversal of the loop is needed to stop
execution.

3.3 Decryption Routine Verification
The previous phase detects the presence of a possible de-

cryption routine by finding the loops in its control flow struc-
ture. During the detection of the loop, a form of GetPC
code should be available to find a pointer to the encrypted
payload. The data flow of the detected loop is analyzed to
improve the overall accuracy of the method. Two properties
of of decryption routines are exploited for this purpose.

The first property is that in a detected loop, there must
be a memory-write instruction that uses indirect addressing.
That is, a register is used to contain an offset that partly
identifies the location where data is to be read or written. In
addition, the memory address pointers to the input network
traffic. IA-32 [3] offers 24 memory addressing modes which
can be classified into two categories - the direct and indirect
addressing. For direct addressing, the memory operand’s
address is specified directly in the instruction. For indi-
rect addressing, the memory operand’s address is referenced
through one or two registers. These registers offer a base ad-
dress(stored in the base register) w/o an offset value(stored
in the index register). A memory-write instruction using di-
rect addressing is unlikely the instruction that directly mod-
ifies the encrypted payload. The hard-coded address easily
results a fragile exploit code. (That is why the GetPC code
is needed). For instance, the instruction at address 000D

in figure 2 (a) is such an example. IA-64 architecture also
supports RIP/EIP-relative data addressing. The memory ad-
dress can be referred through RIP/EIP registers.

The second property is that the register holding the ad-
dress or offset must be updated within the loop. Otherwise
the same memory location will be written over and over. In
our current prototype, we only look for instructions that will
update the register value in predictable and regular ways.
For instance, inc/dec/sub/add instructions are most favor-
able for updating the registers. Other instructions, such as
string instruction lods and loop instruction loop may also
be used to update the register which holds the address or the
offset. Future work will generalize this analysis. A possible
way for the attackers to achieve the randomness is using a
sequence of push instructions to specify the decryption or-
der in the stack. The decryption loop then uses pop to get
the order and then decode iteratively.

A few implementation details are as follows. Each instruc-
tion in a cycle is inspected to determine if it satisfies the first
property, according to its opcode and addressing mode. If
it is such an instruction, the cycle is cut to create an in-
struction sequence, with this instruction at the end. Then,
other instructions in the sequence are sliced out by check-
ing whether they have a data-flow dependency on the target
instruction, using backward data flow analysis.

For example, suppose an unwrapped cycle contains the in-
struction sequence inc eax, xchg eax,esi, xor [esi],ebx.
The first two instructions are sliced out because of their ef-
fect on register esi, used in the final instruction.

For checking the data flow dependency of two instructions,
instructions are first converted, through into a semantics-
preserving transformation, into an intermediate representa-
tion. This is helpful for overcoming code obfuscation tech-
niques used in metamorphic exploits. For instance, a well
crafted decryption routine may combine several processing
steps into a single instruction. The loop and lodsd instruc-
tions shown in figure 2 are examples.

4. EVALUATION
A prototype of the proposed method has been imple-

mented, and evaluated under realistic conditions. The re-
sults are described below.

4.1 Detection Rate
We tested the detection capability of the proposed ap-

proach on polymorphic exploits. These exploits were gen-
erated by two off-the-shelf polymorphic engines: ADMmu-
tate [5], and Clet [6]. These engines have been used in other
research papers for the same purpose [16, 14, 19, 18]. Also
tested were polymorphic exploits generated by the Metas-
ploit Framework [4]. This is a powerful open source frame-
work for the construction and execution of exploits. This
framework has also been used in other research [10, 19, 23].

The first experiment was as follows. 10 exploits were
downloaded from Milw0rm (http://www.milw0rm.com). For
each exploit, 10 polymorphic instances were generated, using
the above tools (ADMmutate and Clet). ADMmutate may
be the first well-known polymorphic engine. It can generate
a simple metamorphic NO-OP sled with one-byte instruc-
tions, and a metamorphic decryption routine using several
advanced obfuscation techniques. These include using mul-
tiple code paths for an operational instruction and inserting
non-operational “junk” instructions. Clet can generate a
metamorphic NO-OP sled using English words. It also uses
“cramming” bytes to make the byte frequency of the re-
sulting polymorphic exploit codes resemble that of normal
network traffic.

Each of these exploit instances was then input to the pro-
posed detection method. All 100 instances were successfully
identified as exploit code. Both of these polymorphic en-
gines generate encrypted exploit codes with an obvious NO-
OP sled of sufficient length, as well as an obvious decryption
loop. Previously-proposed detection methods [10, 23, 19, 22,
9] may also be able to detect such exploits. The existence
of a sufficiently long NO-OP sled will help them cope with
the non-obvious starting location of the decryption routine.

The second experiment simulated remote exploit attacks,
using the Metasploit Framework. The target service was an
unpacked Windows XP host running the Serv-U ftp server
v4.0. Attacks were launched from a Windows host using
polymorphic exploits for the following vulnerabilities:

• Serv-U FTPD MDTM Overflow 3

• Microsoft RPC DCOM MS03-026 4

• Microsoft LSASS MSO4-011 Overflow5

• Microsoft ASN.1 Library Bitstring Heap Overflow 6

For each vulnerability, we launched multiple attacks from
the Metasploit console interface, using the following encoders
(encryption methods):

1. Pex

2. PexFnstenvSub

3. PexFnstenvMov

4. Countdown

3http://www.osvdb.org/4073
4http://www.osvdb.org/2100
5http://www.osvdb.org/5248
6http://www.microsoft.com/technet/security/bulletin/MS04-
007.mspx

5. JmpCallAdditive

6. Alpha2

7. ShikataGaNai

These were combined with two NO-OP sled generation meth-
ods: Pex, and Opty. Pex generates a NO-OP sled with
one-byte instructions. Opty generates a NO-OP sled with
multiple-byte instructions, as well as a “trampoline” sled,
which transfers control using relative addressing directly to
the exploit code. The traffic capture tool Ethereal was used
to capture the network traffic generated by Metasploit. This
traffic was then input to the prototype implementation of
the proposed detection method.

The proposed approach successfully detected all of the
polymorphic exploits generated using encoders Pex, PexFn-
stenvSub, PexFnstenvMov, Countdown, and JmpCallAdditive.
These encoders generate static decryption code with the
properties identified in section 3.3. They do not employ self-
modification on decryption routines. Figure 2, for example,
shows the disassembly of the decryption code produced by
the Countdown and JmpCallAdditive encoders. The under-
lines mark the major functional decryption instructions: the
seeding instruction of the GetPC code, the memory-write
instruction for decrypting the encoded payload and the in-
struction for updating the address of encoded byte.

More impressively, the proposed method successfully de-
tected 100% of the exploits generated by the Alpha2 and
ShikataGaNai encoders. These methods generate self-modif-
ying decryption routines. The decryption loop is changed or
patched “on the fly” (during execution) before it is used to
decrypt the exploit. For illustration, figure 3 shows the dis-
assembly of the self-modifying decryption code for Shikata-
GaNai encoder. Figure 3(a) shows the original decryption
routine before execution. Figure 3(b) demonstrates the re-
sults after execution of the self-modifying decryption rou-
tine. The underlined instructions in (b) have the same ef-
fects as those shown in figure 2. In addition, the underlined
bytes identify the modified instructions before and after exe-
cution. In the appendix, we also present the disassembly re-
sults of the self-modifying decryption routine for the Alpha2

encoder.
The polymorphic exploit code for attacking Serv-U FTPD

MDTM Overflow vulnerabilities do not use a NO-OP sled.
This has been verified by inspection of the outputs gen-
erated under different configurations, and by inspection of
the Metasploit source code. The absence of a NO-OP sled
will likely defeat several proposed methods which specifically
look for NO-OP sled [22, 9]. The network-level emulation
method (e.g., [19]) is also likely to have problems identifying
the start of the decryption routine. One of its heuristic for
performance optimization is to skip several bytes (e.g. 50
bytes) after a zero byte is detected at a byte offset. Without
the compensation effect of the NO-OP sled, instructions of
the decryption routine code could be missed by the method.
Sigfree [23] cannot detect polymorphic exploit code gener-
ated by small-sized decryption routines, such as Countdown,
as mentioned in [23]. It also cannot detect polymorphic
exploits that use self-modifying decryption routines, such
as the exploit codes generated by encoder ShikataGaNai.
The method proposed by Chinchani et al. [10] also cannot
detect polymorphic exploits with self-modifying decryption
routines.

In summary, the proposed method achieves a 100% de-
tection rate on polymorphic exploit code, with or without
NO-OP sleds, and with or without self-modifying decryp-
tion routines. No previous method of static analysis has
been able to achieve this. The emulation method [19] can
deal with the polymorphic exploit code with self-modifying
decryption routines. However they are not robust against
those without NO-OP sleds.

4.2 False Positives
We also tested the proposed method on normal (non-

exploit) network traffic, and on Windows binary executa-
bles. A detection method should indicate in both cases that
the traffic does not contain exploits. Indicating otherwise is
regarded as a false positive.

We collected network traffic for five days from users in
our lab, engaging in normal activities. Most of the traffic
was UDP, FTP, HTTP, SSL, and other TCP data packets.
Among these packets, the number of FTP and TCP packets
containing downloaded executables, video files, and stream-
ing video was significant (>90%). Over 4 million packets
were captured, with a total payload size of more than 5 GB.

The data payloads from these packets were extracted and
presented to the proposed method for testing, a packet at a
time. Most exploits are small (a few tens of bytes) and easily
fit within a single packet. (We discuss the limitations of this
approach in section 5.) A packet incorrectly identified as
containing an exploit was a false positive. The false positive
rate was calculated as:

(# of falsely identified packets) / (Total # of packets)

Windows executables were also analyzed to determine the
ability of the proposed method to distinguish exploit code
from non-exploit code. Executables in the C: \ windows
\system32 directory of a machine running Microsoft Win-
dows XP, service pack 2, were used for this purpose. The
total size of these files was around 1 GB. For analysis, we
packetized each executable into a sequence of packets, and
analyzed each packet separately. The false positive rate was
calculated as above.

The results were as follows. The false positive rate was
0.0126% for the case of Windows executables, and 0.0002%
for the case of captured network traffic. Only 8 out of more
than 4 million packets resulted in false identifications, or
alerts. The packet contents were manually inspected to ver-
ify that they did not contain exploits.

4.3 Processing Cost
We also measured the running time cost of the core de-

tection algorithm of the proposed approach. The standard
C function clock() was used for this purpose. Pairwise
clock() functions were inserted appropriately to embrace
the target detection procedures. The elapsed time between
the pairwise clock() measurements was collected and accu-
mulated. In these experiments, network packets and Win-
dows executables of various sizes, ranging from several bytes
to millions of bytes in length, were analyzed. The processing
speed of our method is calculated as the sizes of processed
packets or files against the corresponding processing time.
The experiments were performed on a machine running Mi-
crosoft Windows XP, service pack2, with a Pentium(R)D
3.00GHz CPU, and 2GB of RAM. Figure 4 shows the nor-
malized results.

Processing Cost

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 20 40 60 80 100 120

input size (k)

P
ro

ce
ss

in
g

T
im

e
(s

)

Figure 4: Running Time Overhead

Our non-optimized implementation demonstrates a mod-
est processing speed. The results show almost a linear re-
lationship between the packet size, and running time. The
current implementation achieves a speed of roughly 1.5M/s.
This method has not been optimized yet, and substantial
speedups should be possible.

5. ATTACK ANALYSIS
We discuss now the possibility of defeating the the pro-

posed detection method.

Fragmentation. Decryption routines are normally of small
size. They can be contained within single packets.
However, the attackers may deliberately split exploit
traffic across multiple packets. It is trivial to reassem-
ble packets before analysis, at the cost of modest ad-
ditional processing overhead (i.e., the dependence on
payload size is slightly greater than linear, as shown
in Figure 4.)

No use of looping by the decryption routine. A loop
is very likely to be needed for decryption purposes,
since in-line coding of a decryption routine will other-
wise be much longer (and therefore easier to identify).
Interspersed in-line decryption code and the encrypted
exploit payload should be highly carefully designed.
This is because the decryption code after its work-
ing should be bypassed by the decrypted exploit code.
Here we do not claim there are no such encryption or
decryption methods. Instead, we speculate no use of
looping for the decryption methods will raise the bar
for the attackers.

Use of values not in the exploit code. Polychronakis et
al. [19] have pointed out that attackers can use data
from the environment in which the exploit executes.
If self-modifying code relies on a key outside the ad-
dress space of the exploit, this will not be detected by
the proposed method at present. However, such ex-
ploits will be much more platform specific, and there-
fore much more sensitive to small system changes and
randomization techniques [24].

Long or infinite loops. The analysis time of traversal and
execution depends on the length of the derived chain

of instructions. If the code contains a lengthy loop, or
one which does not terminate, analysis may fail or may
require an excessive amount of time. Nevertheless, our
approach can still be useful as a first-stage detection
method. Polychronakis et al. [19] demonstrated that
long loops in normal network traffic are rare.

6. CONCLUSIONS
In this paper, we presented a new method for detection of

self-decrypting polymorphic exploits. The proposed method
scans network traffic for the presence of a decryption rou-
tine, which is characteristic of such exploits. The proposed
method outperforms previous proposals [10, 23, 19, 22, 9]
in its capability to identify more precisely the starting lo-
cation of the decryption routine, with fewer assumptions.
The method also can identify the decryption routine even if
self-modifying code has been used to conceal its presence.

The evaluation results show that the proposed method has
a 100% detection rate on realistic exploits of many types, in-
cluding those that use self-modifying code, and/or that do
not have a NO-OP sled. On a large collection of network
traffic and Windows executables, a very low false positive
rate was observed. The non-optimized implementation run-
ning time is roughly linear in the amount of data processed.
These results indicate the proposed method is likely to be
useful as part of an automated network defense again both
targeted attacks, and large-scale zero-day worm outbreaks.

Future work will focus on generalizing the method for less
obvious sequences of byte decoding. In addition, we will test
the method on non-exploit code that uses code obfuscation,
code encryption, and self-modification for legitimate pur-
poses (e.g., to prevent reverse-engineering, and to protect
license verification). We expect the way these techniques
are used to be substantially different than exploit code.

7. REFERENCES
[1] Common vulnerabilities and exposures.

http://cve.mitre.org/cve/downloads/full-cve.csv.

[2] Computer Economics.
http://www.computereconomics.com.

[3] Intel Architecture Software Developers Manual.
Volume 2: Instruction Set Reference.

[4] Metasploit project. http://www.metasploit.org.

[5] The ADMmutate polymorphic engine.
http://www.ktwo.ca/ADMmutate-0.8.4.tar.gz.

[6] The CLET polymorphism engine.
http://www.phrack.org/show.php?p=61&a=9.

[7] Bro Intrusion Detection System, 2003.
http://www.bro-ids.org.

[8] Snort: an open source network intrusion prevention
and detection system, 2005. http://www.snort.org.

[9] P. Akritidis, E. Markatos, M. Polychronakis, and
K. Anagnostakis. STRIDE: Polymorphic Sled
Detection through Instruction Sequence Analysis. In
Proceedings of the 20th IFIP International
Information Security Conference (SEC’05), pages
375–392, June 2005.

[10] R. Chinchani and E. Berg. A Fast Static Analysis
Approach To Detect Exploit Code Inside Network
Flows. In Proceedings of the 8th International
Symposium on Recent Advances in Intrusion Detection
(RAID’05), pages 284–308, September 2005.

[11] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and
R. E. Bryant. Semantics-Aware Malware Detection. In
Proceedings of 2005 IEEE Symposium on Security and
Privacy (S&P’05), pages 32–46, May 2005.

[12] J. C Foster and M. Price. Sockets, Shellcode, Porting,
& Coding: Reverse Engineering Exploits and Tool
Coding for Security Professionals. Syngress
Publishing, USA, 2005.

[13] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna.
Static Disassembly of Obfuscated Binaries. In
Proceedings of the 13th USENIX Security Symposium,
pages 255–270, Auguest 2004.

[14] Z. Li, M. Sanghi, Y. Chen, M. Kao, and B. Chavez.
Hamsa: Fast signature generation for zero-day
polymorphic worms with provable attack resilience. In
Proceedings of 2006 IEEE Symposium on Security and
Privacy (S&P’06), pages 32–47, May 2006.

[15] S. S. Muchnick. Advanced Comiler Design
Implementation. Morgan Kaufmann Publisher, CA,
USA, 1997.

[16] J. Newsome, B. Karp, and D. Song. Polygraph:
Automatically Generating Signatures for Polymorphic
Worms. In Proceedings of 2005 IEEE Symposium on
Security and Privacy (S&P’05), pages 226–241, May
2005.

[17] J. Newsome, B. Karp, and D. Song. Paragraph:
Thwarting Signature Learning By Training
Maliciously. In Proceedings of the 9th International
Symposium on Recent Advances in Intrusion Detection
(RAID’06), September 2006.

[18] U. Payer, M. Lamberger, and P. Teufl. Hybrid engine
for polymorphic code detection. In Proceedings of the
Conference on Detection of Intrusions and Malware &
Vulnerability Assessment(DIMVA’05), pages 19–31,
July 2005.

[19] M. Polychronakis, K. Anagnostakis, and E. Markatos.
Network-Level Polymorphic Shellcode Detection Using
Emulation. In Proceedings of the Conference on
Detection of Intrusions and Malware & Vulnerability
Assessment(DIMVA’06), July 2006.

[20] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and
W. Lee. PolyUnpack: Automating the Hidden-Code
Extraction of Unpack-Executing Malware. In
Proceedings of the 22th Annual Computer Security
Applications Conference (ACSAC’06), December 2006.

[21] S. Sidiroglou and A. Keromytis. Countering Network
Worms Through Automatic Patch Generation. In
Research Report, 2003.

[22] T. Toth and C. Kruegel. Accurate Buffer Overflow
Detection via Abstract Payload Execution. In
Proceedings of the 5thInternational Symposium on
Recent Advances in Intrusion Detection (RAID’02),
pages 274–291, October 2002.

[23] X. Wang, C. Pan, P. Liu, and S. Zhu. SigFree: A
Signature-free Buffer Overflow Attack Blocker. In
Proceedings of the 15th USENIX Security Symposium,
pages 225–240, July 2006.

[24] J. Xu, Z. Kalbarczyk, and R. K. Iyer. Transparent
runtime randomization for security. In Proceedings of
the 22th International Symposium on Reliable
Distributed Systems (SRDS’03), pages 260–269,
October 2003.

[25] V. Yegneswaran, J. Giffin, P. Barford, and S. Jha. An
architecture for generating semantic-aware signatures.
In Proceedings of the 14th USENIX Security
Symposium, pages 97–112, August 2005.

APPENDIX
Appendix

In this appendix, we provide the disassembly results of
the self-modifying decryption routine for Alpha2 encoder.
The underlined instructions in figure 5 (b) are the seeding
instruction of the GetPC code, the memory-write instruc-
tion for decrypting the encoded payload and the instruction
for updating the address of encoded bytes. The underlined
bytes in (a) and (b) highlight the contrast of modified in-
structions before and after execution.

������������������������������������	

���
����	�����������������������������������

������������	������������������������

���	�������������������������������

������������������������������������

�����������������������������������

������������������������������������

�����������������������������������

�����������������������������������

�����������������������������������

�����������������������������������

������������������������������������

���
��������������������������������

������������������������������������

�������������������������������������

���	��������������������������������

������������������������������������

������������������������������������

������������������������������������

������������������������������������

������������������������������������

�����������������������������������

��������	������������������������� ���

��������	�����������������������������

�������������������������������� ���

��
�����	������������������������������

��
���������
����������������!�"���#��$%���

��
�����	������������������������� ����

��
	���������������������������&'���

��
������
���������������������&'����

��
���������
����	� &�������%�"���#��$%	�

��
������
���������������������&'����

��
������
��
����������������!���%�"���#��$

��
�����
�������������������!���%�"��#��$

���
������������������������!�"��#��$%���

���	����	����������������������������

��������	������������������������ ����

������������
��
�������������"���#�
$%��

���������	�	�����������������'������

�����������������������������������

()�������*�'!+�,�����+����-

������������������������������������	

���
����	�������������������������������.��/����0����

������������	������������������������

���	�������������������������������

������������������������������������

�����������������������������������

������������������������������������

�����������������������������������

�����������������������������������

�����������������������������������

�����������������������������������

������������������������������������

���
��������������������������������

������������������������������������

�������������������������������������

���	��������������������������������

������������������������������������

������������������������������������

������������������������������������

������������������������������������

������������������������������������

�����������������������������������

��������	������������������������� ���

��������	������������������������������

�������������������������������� ���

��
�����	������������������������������

��
���������
����������������!�"���#��$%���

��
�����	������������������������� ����

��
	���������������������������&'���

��
������
���������������������&'����

��
���������
������ &�������%�"���#��$%��

��
������
���������������������&'����

��
������
��
����������������!���%�"���#��$

��
�����
�������������������!���%�"��#��$

���
������������������������!�"��#��$%���

���	����	����������������������������

��������	������������������������ ����

������������
��
�������������"���#�
$%��

���������	��� �'����
	

�����������������������������������

()�������*�'!+�,�����+����-

.�0 .�0

Figure 5: Disassembly of Self-Modifying decryption

routine for Alpha2 encoder. a) Before Execution b)

After Execution. In each figure, the leftmost column

shows instructions’ addresses represented in hex format;

the middle column shows the actual instruction bytes;

the rightmost column shows the decoded instructions.

Instruction call 0002 at address 0005 and pop ecx at ad-

dress 0002 are the GetPC code of this example.

