

Using SoftICE

Windows NT™

Windows® 98
Windows® 95
Windows® 3.1
DOS

™

July 1998

Information in this document is subject to change without notice and does not represent a commitment on the part
of Compuware Corporation. The software described in this document may be used or copied only in accordance with
the terms of the license. The purchaser may make one copy of the software for a backup, but no part of this user
manual may be reproduced, stored in a retrieval system, or transmitted in any form or by any means electronic or
mechanical, including photocopying and recording for any purpose other than the purchaser’s personal use, without
prior written permission from Compuware Corporation.

NOTICE: The accompanying software is confidential and proprietary to Compuware Corporation. No use or
disclosure is permitted other than as expressly set forth by written license with Compuware Corporation.

Copyright © 1996, 1998 Compuware Corporation.

All Rights Reserved.

Compuware, the Compuware logo, NuMega, the NuMega logo, BoundsChecker, SoftICE, and On-Demand
Debugging are trademarks or registered trademarks of Compuware Corporation.

Microsoft, Windows, Win32, Windows NT, Visual Basic, and ActiveX are either trademarks or registered trademarks
of Microsoft Corporation.

Borland and Delphi are either trademarks or registered trademarks of Borland International, Incorporated.

Watcom is a trademark of Sybase, Incorporated or its subsidiaries.

Other brand and product names are either trademarks or registered trademarks of their respective holders.

Part number 0000-55-2751

This Software License Agreement is not applicable if You have a valid Compuware License Agreement and have licensed this Software under a Compuware Product Schedule.

Software License Agreement
Please Read This License Carefully

You are purchasing a license to use Compuware Corporation Software. The Software is the property of Compuware Corporation and/or its licensors, is protected by intellectual property laws, and
is provided to You only on the license terms set forth below. This Agreement does not transfer title to the intellectual property contained in the Software. Compuware reserves all rights not
expressly granted to you. Opening the package and/or using the Software indicates your acceptance of these terms. If you do not agree to all of the terms and conditions, or if after using the
Software you are dissatisfied, return the Software, manuals and any copies within thirty (30) days of purchase to the party from whom you received it for a refund, subject in certain cases to a
restocking fee.

Title and Proprietary Rights: You acknowledge and agree that the Software is proprietary to Compuware and/or its licensors, and is protected under the laws of the United States and other
countries. You further acknowledge and agree that all rights, title and interest in and to the Software, including intellectual property rights, are and shall remain with Compuware and/or its
licensors. Unauthorized reproduction or distribution is subject to civil and criminal penalties.

Use Of The Software: Compuware Corporation ("Compuware") grants a single individual (“You”) the limited right to use the Compuware software product(s) and user manuals included in the
package with this license ("Software"), subject to the terms and conditions of this Agreement. You agree that the Software will be used solely for your internal purposes, and that at any one time,
the Software will be installed on a single computer only. If the Software is installed on a network system or on a computer connected to a file server or other system that physically allows shared
access to the Software, You agree to provide technical or procedural methods to prevent use of the Software by more than one individual. Individuals other than You may not have access to the
Software even at different times.

One machine-readable copy of the Software may be made for BACK UP PURPOSES ONLY, and the copy shall display all proprietary notices, and be labeled externally to show that the back-up
copy is the property of Compuware, and that its use is subject to this License. Documentation may not be copied in whole or part.

You may not use, transfer, assign, export or in any way permit the Software to be used outside of the country of purchase, unless authorized in writing by Compuware.

Except as expressly provided in this License, You may not modify, reverse engineer, decompile, disassemble, distribute, sub-license, sell, rent, lease, give or in any way transfer, by any means or in
any medium, including telecommunications, the Software. You will use your best efforts and take all reasonable steps to protect the Software from unauthorized use, copying or dissemination, and
will maintain all proprietary notices intact.

Government Users: With respect to any acquisition of the Software by or for any unit or agency of the United States Government, the Software shall be classified as "commercial computer
software", as that term is defined in the applicable provisions of the Federal Acquisition Regulation (the "FAR") and supplements thereto, including the Department of Defense (DoD) FAR
Supplement (the "DFARS"). If the Software is supplied for use by DoD, the Software is delivered subject to the terms of this Agreement and either (i) in accordance with DFARS 227.7202-1(a)
and 227.7202-3(a), or (ii) with restricted rights in accordance with DFARS 252.227-7013(c)(1)(ii) (OCT 1988), as applicable. If the Software is supplied for use by a Federal agency other than
DoD, the Software is restricted computer software delivered subject to the terms of this Agreement and (i) FAR 12.212(a); (ii) FAR 52.227-19; or (iii) FAR 52.227-14(ALT III), as applicable.
Licensor: Compuware Corporation, 31440 Northwestern Highway, Farmington Hills, Michigan 48334.

Limited Warranty and Remedy: Compuware warrants the Software media to be free of defects in workmanship for a period of ninety (90) days from purchase. During this period, Compuware will
replace at no cost any such media returned to Compuware, postage prepaid. This service is Compuware's sole liability under this warranty. COMPUWARE DISCLAIMS ALL EXPRESS AND
IMPLIED WARRANTIES, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. SOME STATES DO NOT
ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY TO YOU. IN THAT EVENT, ANY IMPLIED WARRANTIES ARE
LIMITED IN DURATION TO THIRTY (30) DAYS FROM THE DELIVERY OF THE SOFTWARE. YOU MAY HAVE OTHER RIGHTS, WHICH VARY FROM STATE TO STATE.

Infringement of Intellectual Property Rights: In the event of an intellectual property right claim, Compuware agrees to indemnify and hold You harmless provided You give Compuware prompt
written notice of such claim, permit Compuware to defend or settle the claim and provide all reasonable assistance to Compuware in defending or settling the claim. In the defense or settlement of
such claim, Compuware may obtain for You the right to continue using the Software or replace or modify the Software so that it avoids such claim, or if such remedies are not reasonably available,
accept the return of the infringing Software and provide You with a pro-rata refund of the license fees paid for such Software based on a three (3) year use period.

Limitation of Liability: YOU ASSUME THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF THE SOFTWARE. IN NO EVENT WILL COMPUWARE BE LIABLE
TO YOU OR TO ANY THIRD PARTY FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING BUT NOT LIMITED TO, LOSS OF
USE, DATA, REVENUES OR PROFITS, ARISING OUT OF OR IN CONNECTION WITH THIS AGREEMENT OR THE USE, OPERATION OR PERFORMANCE OF THE
SOFTWARE, WHETHER SUCH LIABILITY ARISES FROM ANY CLAIM BASED UPON CONTRACT, WARRANTY, TORT (INCLUDING NEGLIGENCE), PRODUCT LIABILITY
OR OTHERWISE, AND WHETHER OR NOT COMPUWARE OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE. SOME
STATES DO NOT ALLOW THE LIMITATION OR EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR
EXCLUSION MAY NOT APPLY TO YOU. IN NO EVENT SHALL COMPUWARE BE LIABLE TO YOU FOR AMOUNTS IN EXCESS OF PURCHASE PRICE PAID FOR THE
SOFTWARE.

Terms and Termination

This License Agreement shall be effective upon your acceptance of this Agreement and shall continue until terminated by mutual consent, or by election of either You or Compuware in case of the
other’s unremediated material breach. In case of any termination of the Agreement, you will immediately return to Compuware the Software that You have obtained under this Agreement and will
certify in writing that all copies of the Software have been returned or erased from the memory of your computer or made non-readable.

General: This License is the complete and exclusive statement of the parties' agreement. Should any provision of this License be held to be invalid by any court of competent jurisdiction, that
provision will be enforced to the maximum extent permissible and the remainder of the License shall nonetheless remain in full force and effect. This Agreement shall be governed by the laws of the
State of Michigan and the United States of America.

Contents
Purpose of This Manual xi

Audience xi

Organization of This Manual xi

Typographical Conventions xii

How to Use This Manual xiii

Other Useful Documentation xiii

Chapter 1: Welcome to SoftICE 1

Product Overview 3

About SoftICE 3

About Symbol Loader 5

Customer Assistance 6

For Non-technical Issues 6

For Technical Issues 7

Chapter 2: Installing SoftICE 9

Introduction 11

Hardware and Software Requirements 11

SoftICE Display Options 12

Pre-installation 14

Installation 14

Post-installation 19

Configuring BOOT.INI to Support a Single CPU on a
Multiprocessor System 20

Configuring SoftICE Loading for Windows 95 20

Connecting a Second Computer Through a Serial Port
21

Solving Display Adapter Problems 23

Chapter 3: SoftICE Tutorial 25

Introduction 27

Loading SoftICE 27

Building the GDIDEMO Sample Application 28

Loading the GDIDEMO Sample Application 29

Controlling the SoftICE Screen 30

Tracing and Stepping through Source Code 31

Viewing Local Data 32

Setting Point-and-Shoot Breakpoints 32

Setting a One-Shot Breakpoint 32

Setting a Sticky Breakpoint 33

Using SoftICE Informational Commands 34

Using Symbols and Symbol Tables 36

Setting a Conditional Breakpoint 37

Setting a BPX Breakpoint 37

Editing a Breakpoint 38

Setting a Read-Write Memory Breakpoint 39

Chapter 4: Loading Code into SoftICE 43

Debugging Concepts 45

Preparing to Debug Applications 45

Preparing to Debug Device Drivers and VxDs 46

Loading SoftICE Manually 46

Loading SoftICE for Windows 95 46

Loading SoftICE for Windows NT 47

Building Applications with Debug Information 48

Using Symbol Loader to Translate and Load Files 49

Modifying Module Settings 51
Using SoftICE v

Contents

Modifying General Settings 52

Modifying Translation Settings 53

Modifying Debugging Settings 54

Specifying Program Source Files 55

Deleting Symbol Tables 56

Using Symbol Loader From a DOS Prompt 56

Using the Symbol Loader Command-Line Utility 57

NMSYM Command Syntax 58

Using NMSYM to Translate Symbol Information 59

Using NMSYM to Load a Module and Symbol
Information 62

Using NMSYM to Load Symbol Tables or Exports 65

Using NMSYM to Unload Symbol Information 66

Using NMSYM to Save History Logs 67

Getting information about NMSYM 67

Chapter 5: Navigating Through SoftICE 69

Introduction 71

Popping Up the SoftICE Screen 71

Disabling SoftICE at Startup 71

Using the SoftICE Screen 72

Resizing the SoftICE Screen 73

Controlling SoftICE Windows 73

Copying and Pasting Data 75

Entering Commands From the Mouse 75

Obtaining Help 76

Using the Command Window 77

Scrolling the Command Window 77

Entering Commands 77

Recalling Commands 80

Using Run-Time Macros 81

Saving the Command Window History Buffer to a File
82

Associated Commands 83

Using the Code Window 83

Controlling the Code Window 83

Viewing Information 85

Entering Commands From the Code Window 86

Using the Locals Window 87

Controlling the Locals Window 87

Expanding and Collapsing Stacks 88

Associated Commands 88

Using the Watch Window 89

Controlling the Watch Window 89

Setting an Expression to Watch 90

Viewing Information 90

Expanding and Collapsing Typed Expressions 90

Associated Commands 91

Using the Register Window 91

Controlling the Register window 91

Viewing Information 91

Editing Registers and Flags 92

Associated Commands 93

Using the Data Window 93

Controlling the Data Window 93

Viewing Information 94

Changing the Memory Address and Format 95

Editing Memory 95

Assigning Expressions 95

Associated Commands 96

Using the FPU Stack Window 96

Viewing Information 96

Chapter 6: Using SoftICE 97

Debugging Multiple Programs at Once 99

Trapping Faults 99

Ring 3 32-bit protected mode (Win32 programs) 99

Ring 0 driver code (Kernel-mode device drivers) 100

Ring 3 16-bit protected mode (16-bit Windows
programs) 100

About Address Contexts 101

Using INT 0x41 .DOT Commands 102
vi Using SoftICE

Contents
Understanding Transitions From Ring-3 to Ring-0
103

Chapter 7: Using Breakpoints 105

Introduction 107

Types of Breakpoints Supported by SoftICE 107

Breakpoint Options 108

Execution Breakpoints 108

Memory Breakpoints 109

Interrupt Breakpoints 110

I/O Breakpoints 111

Window Message Breakpoints 112

Understanding Breakpoint Contexts 113

Virtual Breakpoints 113

Setting a Breakpoint Action 114

Conditional Breakpoints 114

Conditional Breakpoint Count Functions 116

Using Local Variables in Conditional Expressions 119

Referencing the Stack in Conditional Breakpoints
120

Performance 122

Duplicate Breakpoints 122

Elapsed Time 122

Breakpoint Statistics 123

Referring to Breakpoints in Expressions 123

Manipulating Breakpoints 124

Using Embedded Breakpoints 124

Chapter 8: Using Expressions 125

Expressions 127

Operators 127

Operator Precedence 129

Forming Expressions 130

Expression Types 134

Type Casting 137

Evaluating Symbols 139

Using Indirection With Symbols 139

Chapter 9: Loading Symbols for System
Components 141

Loading Export Symbols for DLLs and EXEs 143

Using Unnamed Entry Points 143

Using Export Names in Expressions 144

Loading 32-bit DLL Exports Dynamically 144

Using Windows NT Symbol (DBG) Files with SoftICE
145

Using Windows 95 Symbol (.SYM) Files with SoftICE
145

Chapter 10: Using SoftICE with a Modem
147

Introduction 149

Hardware Requirements 149

Establishing a Connection 149

Using SERIAL.EXE by Modem 150

DIAL Command 150

ANSWER Command 151

Chapter 11: Customizing SoftICE 153

Modifying SoftICE Initialization Settings 155

Modifying General Settings 155

Pre-loading Symbols and Source Code 157

Pre-loading Exports 159

Configuring Remote Debugging 159

Modifying Keyboard Mappings 160

Working with Persistent Macros 162

Setting Troubleshooting Options 165

Chapter 12: Exploring
Windows NT 167

Overview 169

Resources for Advanced Debugging 169

Inside the Windows NT Kernel 172

Managing the Intel Architecture 173
Using SoftICE vii

Contents
Windows NT System Memory Map 177

Win32 Subsystem 184

Inside CSRSS 184

USER and GDI Objects 186

Process Address Space 191

Heap API 192

Appendix A: Error Messages 203

Appendix B: Supported
Display Adapters 207

Appendix C: Troubleshooting SoftICE 211

Glossary 213

Index 215
viii Using SoftICE

Some books are to be tasted, others to be swallowed, and some
few to be chewed and digested.

à Francis Bacon
Preface

Purpose of This Manual xi

Audience xi

Organization of This Manual xi

Typographical Conventions xii

How to Use This Manual xiii

Other Useful Documentation xiii
Using SoftICE ix

x Using SoftICE

Purpose of This Manual
Purpose of This Manual

SoftICE is an advanced, all-purpose debugger that can debug virtually any type of code
including applications, device drivers, EXEs, DLLs, OCXs, and dynamic and static VxDs.
This manual describes how to install and use SoftICE to load and debug code for Windows
95 and Windows NT. Since many programers prefer to learn through hands on experience,
this manual includes a tutorial that leads you through the basics of debugging code.

Audience

This manual is for programmers who want to use SoftICE to debug code for Windows 95 and
Windows NT.

Organization of This Manual

The Using SoftICE manual is organized as follows:

• Chapter 1, “Welcome to SoFTICE”

Briefly describes SoftICE and its components and features. Chapter 1 also explains how
to contact the NuMega Technical Support Center.

• Chapter 2, “Installing SoftICE”

Lists the hardware and software requirements for SoftICE, then explains how to install
SoftICE for both Windows 95 and Windows NT.

• Chapter 3, “SoftICE Tutorial”

Provides a hands-on tutorial that demonstrates the basics for debugging code. Topics
include tracing code, viewing the contents of locals and structures, setting a variety of
breakpoints, and viewing the contents of symbol tables.

• Chapter 4, “Loading Code into SoftICE”

Explains how to use SoftICE Symbol Loader to load various types of code into SoftICE.

• Chapter 5, “Navigating Through SoftICE”

Describes how to use the interface SoftICE provides for debugging code.

• Chapter 6, “Using SoftICE”

Provides information about trapping faults, address contexts, using INT 0x41.DOT
commands, and transitions from Ring-3 to Ring-0.

• Chapter 7, “Using Breakpoints”

Explains how to set breakpoints on program execution, on memory location reads and
writes, on interrupts, and on reads and writes to the I/O ports.
Using SoftICE xi

• Chapter 8, “Using Expressions”

Explains how to form expressions to evaluate breakpoints.

• Chapter 9, “Loading Symbols for System Components”

Explains how to load export symbols for DLLs and EXEs and how to use Windows NT
symbol files with SoftICE.

• Chapter 10, “Using SoftICE with a Modem”

Explains how to establish a modem connection to operate SoftICE from a remote PC.

• Chapter 11, “Customizing SoftICE”

Explains how to use the SoftICE configuration settings to customize your SoftICE
environment, pre-load symbols and exports, configure remote debugging, modify
keyboard mappings, create macro-definitions, and set troubleshooting options.

• Chapter 12, “Exploring Windows NT”

Provides a quick overview of the NT operating system.

• Appendix A, “Error Messages”

Explains the SoftICE error messages.

• Appendix B, “Supported Display Adapters”

Lists the display adapters that SoftICE supports.

• Appendix C, “Troubleshooting SoftICE”

Explains how to solve problems you might encounter.

• Glossary

• Index

Typographical Conventions

The following conventions are used consistently throughout this manual to identify certain
types of information:

Convention Description

Enter Indicates that you should type text, then press RETURN or click OK.

italics Indicates variable information. For example: library-name.

monospaced text Used within instructions and code examples to indicate characters you
type on your keyboard.

SMALL CAPS Indicates a user-interface element, such as a button or menu.

UPPERCASE Indicates directory names, file names, key words, and acronyms.
xii Using SoftICE

How to Use This Manual
How to Use This Manual

The following table suggests the best starting point for using this manual based on your level
of experience debugging applications.

Other Useful Documentation

In addition to this manual, NuMega provides the following documentation for SoftICE:

• SoftICE Command Reference

Describes all the SoftICE commands in alphabetical order. Each description provides the
appropriate syntax and output for the command as well as examples that highlight how
to use it.

• SoftICE on-line help

SoftICE provides context-sensitive help for Symbol Loader and a help line for SoftICE
commands in the debugger.

• On-line documentation

Both the Using SoftICE manual and the SoftICE Command Reference are available on line.
To access the on-line version of these books, start Acrobat Reader and open the
SI30UG.PDF (Using SoftICE) or SI30CR.PDF (SoftICE Command Reference) files.

Experience Suggested Starting Point

No experience using debuggers. Perform the tutorial in Chapter 3.

Experience with other debuggers. Read Chapter 4, “Loading Code into SoftICE.” Then read
Chapter 5, “Navigating Through SoftICE.”

Experience using earlier versions of
SoftICE.

Read Chapter 4, “Loading Code into SoftICE.” Then skim
Chapter 5, “Navigating Through SoftICE” to learn about
using the mouse and the Locals and Watch windows.
Using SoftICE xiii

xiv Using SoftICE

To a great experience one thing is essential,
an experiencing nature.

à Walter Bagehot
1 Welcome to SoftICE

Product Overview 3

About SoftICE 3

About Symbol Loader 5

Customer Assistance 6

For Non-technical Issues 6

For Technical Issues 7
Using SoftICE 1

Welcome to SoftICE
2 Using SoftICE

Product Overview
Product Overview

SoftICE is available for both Windows 95 and Windows NT. SoftICE consists of the SoftICE
kernel-mode debugger and the Symbol Loader utility. The SoftICE debugger (SoftICE) is an
advanced, all-purpose debugger that can debug virtually any type of code including interrupt
routines, processor level changes, and I/O drivers. The Symbol Loader utility loads the debug
information for your module into SoftICE, maintains the SoftICE initialization settings, and
lets you save the contents of the SoftICE history buffer to a file. The following sections briefly
describe SoftICE and Symbol Loader.

About SoftICE

SoftICE combines the power of a hardware debugger with the ease of use of a symbolic
debugger. It provides hardware-like breakpoints and sticky breakpoints that follow the
memory as the operating system discards, reloads, and swaps pages. SoftICE displays your
source code as you debug, and lets you access your local and global data through their
symbolic names.

Some of the major benefits SoftICE provides include the following:

• Source level debugging of 32-bit (Win32) applications, Windows NT device drivers
(both kernel and user mode), Windows 95 drivers, VxDs, 16-bit windows programs, and
DOS programs.

• Debugging virtually any code, including interrupt routines and the Windows NT and
Windows 95 kernels.

• Setting real-time breakpoints on memory reads/writes, port reads/writes, and interrupts.

• Setting breakpoints on Windows messages.

• Setting conditional breakpoints and breakpoint actions.

• Displaying elapsed time to the breakpoint trigger using the Pentium clock counter.

• Kernel-level debugging on one machine.

• Displaying internal Windows 95 and Windows NT information, such as:

à Complete thread and process information
à Virtual memory map of a process
à Kernel-mode entry points
à Windows NT object directory

à Complete driver object and device object information
à Win32 heaps
à Structured Exception Handling (SEH) frames
à DLL exports

• Using the WHAT command to identify a name or an expression, if it evaluates to a
known type.
Using SoftICE 3

Welcome to SoftICE
• Popping up the SoftICE screen automatically when an unhandled exception occurs.

• Using SoftICE to connect by modem to a remote user. This enables you to diagnose a
remote user’s problem, such as a system crash.

• Supporting the MMX instruction set extensions.

• Creating user-defined macros.

How the SoftICE Debugger is Implemented

SoftICE for Windows 95 and Windows NT are implemented in slightly different ways.
SoftICE for Windows 95 comprises two VxDs and SoftICE for Windows NT comprises two
NT kernel device drivers, as follows:

Note: SoftICE for Windows NT must be loaded by the Windows NT operating system
because it is implemented as a device driver. Therefore, you cannot debug the following
for Windows NT: any boot driver’s DriverEntry routine, the HAL and NTOSKRNL
initialization code, and any Windows NT loader or NTDETECT code.

Windows 95 (VxD)
Windows NT
(NT Kernel Device Driver)

Description

WINICE.EXE NTICE.SYS Provides the debugger.

SIWVID.386 SIWVID.SYS Provides video support for your PC.
4 Using SoftICE

Product Overview
The SoftICE User Interface

SoftICE provides a consistent interface for debugging applications across all platforms. The
SoftICE user interface is designed to be functional without compromising system robustness.
For SoftICE to pop up at any time without disturbing the system state, it must access the
hardware directly to perform its I/O. Hence, SoftICE uses a full-screen character-oriented
display, as follows:

Refer to Chapter 5: Navigating Through SoftICE on page 69 for more information about using
the SoftICE screen.

About Symbol Loader

Symbol Loader is a graphical utility that extracts debug symbol information from your device
drivers, EXEs, DLLs, OCXs, and dynamic and static VxDs and loads it into SoftICE. This
utility lets you do the following:

• Customize the type and amount of information it loads to suit your debugging
requirements.

• Automatically start your application and set a breakpoint at its entry point.

• Save your debugging session to a file.
Using SoftICE 5

Welcome to SoftICE
The following figure illustrates Symbol Loader.

Symbol Loader also supports a command line interface that lets you use many of its features
from a DOS prompt. Thus, you can automate many of the most common tasks it performs.
Additionally, SoftICE provides a separate command-line utility (NMSYM) that lets you
automate the creation of symbol information from a batch file.

Customer Assistance

For Non-technical Issues

NuMega Customer Service is available to answer any questions you might have regarding
upgrades, serial numbers and other order fulfillment needs. Customer Service is available from
8:30am to 5:30pm EST, Monday through Friday. Call:

• In the U.S. and Canada: 888-283-9896

• International: +1 603 578 8103
6 Using SoftICE

Customer Assistance
For Technical Issues

NuMega Technical Support can assist you with all your technical problems, from installation
to troubleshooting.

Before contacting technical support please read the relevant sections of the product
documentation and the ReadMe files.

You can contact Technical Support by:

Before contacting Technical Support, please obtain and record the following information:

• Product/service pack name and version

• Product serial number

• System configuration: operating system, network configuration, amount of RAM,
environment variables, and paths

• Name and version of your compiler and linker and the options you used in compiling
and linking

• Problem details; settings, error messages, stack dumps, and the contents of any diagnostic
windows

• If the problem is repeatable, the details of how to create the problem

E-Mail Include your serial number and send as many details as
possible to Tech@numega.com

World Wide Web Submit issues and access our support knowledge base at
www.numega.com. Go to Support.

Telephone Telephone support is available as a paid* Priority
Support Service from 8:30am to 5:30pm EST, Monday
through Friday. Have product version and serial number
ready.
In the U.S. and Canada, call: 888 NUMEGA-S
International customers, call: +1 603 578 8100

* Technical Support handles installation and setup issues
free of charge.

Fax Include your serial number and send as many details as
possible to 603 578 8401
Using SoftICE 7

Welcome to SoftICE
8 Using SoftICE

There must be a beginning of any great matter, but the
continuing unto the end until it be thoroughly finished yields

the true glory.

à Sir Francis Drake
2 Installing SoftICE

Introduction 11

Hardware and Software Requirements 11

SoftICE Display Options 12

Pre-installation 14

Installation 14

Post-installation 19

Configuring BOOT.INI to Support a Single CPU on a Multiprocessor System 20

Configuring SoftICE Loading for Windows 95 20

Connecting a Second Computer Through a Serial Port 21

Solving Display Adapter Problems 23
Using SoftICE 9

Installing SoftICE
10 Using SoftICE

Introduction
Introduction

This chapter explains how to install SoftICE on Windows 95 or Windows NT. Note that
SoftICE for Windows 95 can only be installed on Windows 95 and SoftICE for NT can only
be installed on Windows NT.

Hardware and Software Requirements

Depending on whether you are using Windows 95 or Windows NT, the hardware and
software requirements for SoftICE vary as follows:

* The actual memory requirement for SoftICE depends on the number of symbol tables and source
files that load at one time. SoftICE keeps all symbols and source in memory, because it does not
use the file system.

Hardware or
Software

Windows 95 Requirements Windows NT Requirements

PC Intel x86

Breakpoint timing, I/O breakpoints in
Ring 0, and full mouse support require
an Intel Pentium or Pentium-Pro CPU

Intel x86

Breakpoint timing, I/O breakpoints, and
full mouse support require an Intel
Pentium or Pentium-Pro CPU

SoftICE supports uniprocessors or a
single CPU on multiprocessors.

Operating System Windows 95 Windows NT 3.51 (build 1057),

or Windows NT 4.0 (build 1381)

Random Access
Memory (RAM)*

16 MB minimum,

32 MB recommended

32 MB minimum,

64 MB recommend

Disk space 5 MB without Adobe Acrobat Reader

7.5 MB with Adobe Acrobat Reader (for
viewing on-line manuals)

5 MB without Adobe Acrobat Reader

7.5 MB with Adobe Acrobat Reader (for
viewing on-line manuals)

Mouse (optional) Serial or PS/2
(compatible with Microsoft)

Serial or PS/2
(compatible with Microsoft)

SoftICE display One of the following:

• a single display adapter and monitor

• a secondary monochrome card and
monitor

• a second computer connected
through a serial port

• a secondary VGA card and monitor

One of the following:

• a single display adapter and monitor

• a secondary monochrome card and
monitor

• a second computer connected
through a serial port

• a secondary VGA card and monitor
Using SoftICE 11

Installing SoftICE
SoftICE Display Options

The types of programs you plan to debug and the manner in which you prefer to work
determine your SoftICE display requirements, as follows:

• One display adapter and monitor

• Secondary monochrome card and monitor

• Second computer connected through a serial port

• Secondary VGA card and monitor

The following sections describe these options.

One Display Adapter and Monitor

Use a standard PC configuration with one display adapter and monitor to debug applications
when you do not need additional display flexibility. When SoftICE pops up, it uses your
monitor to display your debugging session. Thus, you cannot see the debugging session and
the application you are debugging simultaneously.

Secondary Monochrome Card and Monitor

Use a secondary MDA (Monochrome Display Adapter) or Hercules-compatible display
adapter coupled to a monochrome monitor to display both your application and the SoftICE
debugging session simultaneously. The primary monitor displays your application while the
secondary monochrome monitor displays your SoftICE debugging session. In this
configuration, the SoftICE screen is limited to 25 lines.

Note: Most display adapters can coexist with mono cards; however, there are exceptions.
Review your display adapter documentation to verify that it can coexist with a
monochrome card.

Using a secondary monochrome card and monitor is particularly helpful for debugging under
the following circumstances:

• Debugging with an unsupported display adapter

If SoftICE does not support your display adapter or you are developing a new display
adapter, you can use a secondary monochrome card and monitor as a display alternative.

• Debugging video drivers

When SoftICE assumes control of the display adapter, it may change one or more states.
Using a secondary monochrome card and monitor lets you avoid this situation.
12 Using SoftICE

Hardware and Software Requirements
Second Computer Connected Through a Serial Port

Connect a second computer through a serial port to display both your application and the
SoftICE debugging session simultaneously. The local primary computer displays your
application while the secondary computer displays your SoftICE debugging session.

In essence, the remote computer is a dumb terminal that serves to display output and accept
keyboard input. SoftICE does not provide mouse support for the remote computer.

Note: The computer must be capable of running MS-DOS.

Using a second computer connected through a serial port is particularly helpful for debugging
under the following circumstances:

• Debugging with an unsupported display adapter

If SoftICE does not support your display adapter or you are developing a new display
adapter, you can use a second computer as a display alternative. This option is
particularly useful for laptop computers.

• Debugging display adapters

When SoftICE assumes control of the display adapter, it may change one or more states.
Using a second computer lets you avoid this situation.

• Debugging keyboard drivers

SoftICE uses the same keyboard controller as the driver, so the driver can result in an
unanticipated state. Using a second computer lets you avoid this situation.

Secondary VGA Display Adapter and Monitor

Use a secondary VGA display adapter and monitor to obtain the greatest flexibility for
displaying and debugging an application simultaneously. The primary monitor displays your
application while the secondary monitor displays your SoftICE debugging session.

Warning: Only certain display adapters are designed to support this multiple display adapter
option. Testing whether two display adapters can coexist may damage your
computer. If the display adapter documentation does not state that it supports
multiple display adapters, assume that it does not.

Refer to your display adapter documentation for an explanation of how to disable the VGA
aspects of your video card.
Using SoftICE 13

Installing SoftICE
Pre-installation

Before you install Soft ICE, do the following:

1 If you are installing SoftICE on Windows NT, verify that you have an account with
administrator privileges.

2 Determine which display option you intend to use and look up the appropriate
information, as follows:

• One display adapter and monitor

Determine the display adapter’s manufacturer and model number.

• Secondary monochrome card and monitor

Determine the manufacturer and model number for the primary display adapter.

• Second computer

Determine the manufacturer and model number for the display adapter in the
primary PC.

• Secondary VGA display adapter

Verify that the two display adapters can coexist with one another.

Hint: Use the Control Panel Display properties to determine your manufacturer and model
number.

3 Determine the type of mouse you are using, serial or PS/2. If you are using a serial
mouse, determine whether it is connected to COM1 or COM2.

4 Exit all Windows programs.

Installation

The SoftICE application is packaged on one CD. These instructions explain how to install
SoftICE on Windows 95 or Windows NT. To install SoftICE, do the following:

1 Place the SoftICE CD in your CDROM drive and run the setup program (setup.exe).

2 Choose Install SoftICE.

3 Enter your Name, Company, and Serial number in the Registration window.

Your serial number is located on your registration card.
14 Using SoftICE

Installation
4 In the Select Install Directory window, select the directory where you want to install
SoftICE.

The default directory is C:\SIW95 for Windows 95 and C:\NTICE for Windows NT. If
the directory you choose does not already exist, the wizard creates the directory for you.

5 In the Display Adapter Selection window, select one of the following options:

• To use SoftICE with one display adapter and monitor, select the Manufacturer and
Model of the display adapter. If your display adapter is not listed, select a display
adapter with the same graphics chip as indicated in the COMPATIBILITY box. If you
cannot find a display adapter with the same graphics chip, select STANDARD VGA
(640x480 pixels), finish the installation, and refer to Appendix B: Supported Display
Adapters on page 207.

• To use SoftICE on a secondary monochrome screen, select DISPLAY SOFTICE ON
ATTACHED MONOCHROME MONITOR, then select the Manufacturer and Model of
the primary display adapter. If your display adapter is not listed, select a display
adapter with the same graphics chip as indicated in the COMPATIBILITY box. If you
cannot find a display adapter with the same graphics chip, select STANDARD VGA
(640x480 pixels) and finish the installation.

• To use SoftICE with a second computer, select the Manufacturer and Model for the
primary display adapter. If your display adapter is not listed, select a display adapter
with the same graphics chip as indicated in the COMPATIBILITY box. If you cannot
find a display adapter with the same graphics chip, select STANDARD VGA (640x480
pixels) and finish the installation.

• To use SoftICE with a secondary VGA card, select STANDARD VGA (640x480
pixels). SoftICE ignores the primary display adapter and uses the secondary VGA
adapter and monitor.

Note: To select a different display adapter after installing SoftICE, use DISPLAY ADAPTER
SETUP in the SoftICE program group.
Using SoftICE 15

Installing SoftICE
6 If the display adapter settings you selected in the Display Adapter Selection window
match your Windows 95 or Windows NT display adapter setup, click TEST to test the
display adapter settings. The following table provides examples of when to test and when
not to test your display adapter settings.

Warning: Save any work in progress before attempting the video test. If SoftICE is
incompatible with your display adapter, it is possible that the screen will not
properly restore itself after the test. It is even possible, although unlikely, for
the system to crash.

If the test succeeds, a colorful text-mode screen appears for about five seconds. If SoftICE
is incompatible with your display adapter, the test fails and you most likely see a black or
odd-looking screen. If none of the display adapter selections work, select STANDARD
VGA (640x480 pixels) and refer to Appendix B: Supported Display Adapters on page 207.

Case Example Test Do not Test

Both the Windows display settings and the SoftICE display adapter
settings are set to Standard VGA.

X

The Windows display settings matches either the manufacturer and
model or the chipset selected in the SoftICE display adapter settings.

X

The SoftICE display adapter setting is set to VGA and the Windows
display settings is set to a video driver other than standard VGA.

X

16 Using SoftICE

Installation
7 If you are installing SoftICE under Windows NT, select one of the following options in
the Startup Mode Selection window to determine when SoftICE loads:

Note: To change the startup mode after installation, use STARTUP MODE SETUP in the
SoftICE program group.

8 In the Mouse Selection window, select one of the following options:

• Serial (connected to COM1)

• Serial (connected to COM2)

• PS/2 compatible

• None

Note: To select a different mouse type after installation , use MOUSE SETUP in the
SoftICE program group.

Windows NT
Startup Mode Options

Description

BOOT Boot drivers such as disk controller drivers and certain file system
drivers are critical to system booting. To ensure that it can load
files such as initialization and symbol files, SoftICE always loads
as the last boot driver. Since SoftICE loads last, you cannot debug
the DriverEntry routine of another boot driver.

SYSTEM System drivers are loaded after boot drivers. The system is still in
“Blue Screen” mode at this point.

AUTOMATIC Automatic drivers are loaded by the Service Controller Manager
during the last phase of system startup. The system is essentially
done booting at this point. If you want to load SoftICE every time
Windows NT starts, but you are not interested in debugging a
core device driver, you could load it here.

MANUAL SoftICE is not started automatically when the system boots. This
mode offers the greatest safety and flexibility, but it precludes
debugging device drivers during the system boot. Refer to
Loading SoftICE Manually on page 46.
Using SoftICE 17

Installing SoftICE
9 If you are installing under Windows 95, select one of the following options in the
SoftICE System Configuration window:

10 In the Start Copying Files window, click NEXT to install SoftICE.

11 In the Setup Complete window, click FINISH to restart your computer. If you do not
want to restart your computer, click NO, I WILL RESTART MY COMPUTER LATER, then
click FINISH.

12 Read the README file for last-minute product information.

13 Perform the post-installation.

Windows 95
Startup Mode Options

Description

Let Setup modify
AUTOEXEC.BAT

This option appends the statement C:\SIW95\WINICE.EXE to the
end of your AUTOEXEC.BAT and replaces C:\SIW95 with the
SoftICE installation directory.

Save the required changes to
AUTOEXEC.ICE

This option gives you the opportunity to view the changes in a
temporary file before implementing them. The wizard copies the
AUTOEXEC.BAT to a file named AUTOEXEC.ICE and adds the
WINICE.EXE statement to it. After you review the changes, delete
your existing AUTOEXEC.BAT and rename the AUTOEXEC.ICE file
to AUTOEXEC.BAT.

Do not make any changes This option does not modify your AUTOEXEC.BAT. If you select
this option, you need to configure your system to load SoftICE
before WIN.COM. If you are debugging a device driver, you can
configure your system to decrease significantly the amount of
time it takes you to switch from developing to debugging. Refer
to Configuring SoftICE Loading for Windows 95 on page 20.
18 Using SoftICE

Post-installation
Post-installation

After you install SoftICE, perform the following steps as needed:

1 If you intend to run SoftICE for Windows NT within a single CPU on a multiprocessor,
edit BOOT.INI to add a new boot mode. Refer to Configuring BOOT.INI to Support a
Single CPU on a Multiprocessor System on page 20.

2 If you are running Windows 95 and you selected LET SETUP MODIFY
AUTOEXEC.BAT, Windows 95 does not return control to SoftICE when it shuts
down. Thus, SoftICE cannot save the Break-point history file. To avoid this, set the
BootGUI option in MSDOS.SYS to BootGUI=0. Refer to the BH command in the
SoftICE Command Reference for more information about the Break-point history file
andConfiguring SoftICE Loading for Windows 95 on page 20 for more information about
the BootGUI statement.

3 If you are running Windows 95 and you selected DO NOT MAKE ANY CHANGES in the
SoftICE System Configuration window, configure Windows 95 to load SoftICE before
WIN.COM. Refer to Configuring SoftICE Loading for Windows 95 on page 20.

4 If you are using a second computer to display your SoftICE debugging session, configure
SoftICE as described in Connecting a Second Computer Through a Serial Port on page 21.

5 If you are running Windows 95 and the amount of physical memory installed on your
PC exceeds 32 MB of RAM, modify the TOTAL RAM setting in your SoftICE
Initialization settings to the correct value. Refer to Modifying General Settings on page
155.

6 Fill out your registration and NuMega Upgrade Subscription Program cards and send
them to NuMega.

The NuMega Upgrade Subscription Program provides you with automatic upgrades,
updates, and service packs. If you purchased the NuMega Upgrade Subscription Program
through a NuMega reseller, this card tells NuMega where to send your automatic
upgrades. If you have not purchased the NuMega Upgrade Subscription Program, this
card explains the program and gives you the opportunity to participate in it.
Using SoftICE 19

Installing SoftICE
Configuring BOOT.INI to Support a Single CPU on a Multiprocessor System

If you want to use SoftICE for Windows NT within a single CPU on a multiprocessor, edit
the BOOT.INI file to add a new boot mode as follows:

1 The BOOT.INI file is hidden. Use the ATTRIBUTE command to make the file
available, as follows:

ATTRIBUTE BOOT.INI -S -H -R

2 Use a text editor, such as Notepad, to open the file.

3 Use the existing boot mode in the Operating Systems section as a starting point for
creating a new boot mode by locating and copying the entry that boots your version of
Windows NT. Although the entry varies depending on the version of NT you are using,
it should be similar to the following entry:

multi(0)disk(0)rdisk(0)partition(1)\winnt="Windows NT Workstation
Version 3.51"

4 Paste the new boot mode entry within the Operating Systems section and append the
value /onecpu to the new boot entry, as follows:

multi(0)disk(0)rdisk(0)partition(1)\winnt="Windows NT Workstation
Version 3.51" /onecpu

5 Change the name of the boot mode (the information between the quotation marks) to
identify the new boot mode. The following example illustrates one possible name:

multi(0)disk(0)rdisk(0)partition(1)\winnt=" Windows NT Workstation
Version 3.51 One CPU "/onecpu

6 Reboot your PC.

Configuring SoftICE Loading for Windows 95

SoftICE is a kernel-mode debugger, so it must load before WIN.COM By default, Windows
95 boots directly into the new shell without giving you the opportunity to invoke
WIN.COM explicitly. If you are debugging applications, run WINICE.EXE at the end of
your AUTOEXEC.BAT. If you are developing static VxDs or other drivers, use the following
method to optimize loading SoftICE before WIN.COM:

1 Do one of the following to prevent Windows 95 from automatically loading and to force
a DOS shell interpreter load:

• Press F8 while booting. When the Windows 95 boot menu appears, select the option
COMMAND PROMPT ONLY. Repeat this process each time you boot your PC.

• Append a PAUSE command at the end of your AUTOEXEC.BAT file and press
Ctrl-C when it pauses to escape to DOS.
20 Using SoftICE

Post-installation
• Create a dummy batch file called WIN.BAT. When Windows 95 starts, it executes
WIN.BAT instead of WIN.COM and displays the DOS prompt.

• Modify the Windows 95 hidden file MSDOS.SYS (an INI text file) as follows:

à Use the MS-DOS command ATTRIB to remove the hidden, read-only, and system
attributes.

à Edit the file to change the statement BootGUI=1 to BootGUI=0.

2 Execute the command WINICE.EXE to load SoftICE, which, in turn, loads Windows
95.

3 Debug your code.

4 When you need to restart the computer, select either SHUT DOWN THE COMPUTER or
RESTART THE COMPUTER. Any other shut down option destabilizes SoftICE.

When the final shutdown screen appears, SoftICE resets the display mode back to
standard 80 x 25 text mode and displays the DOS prompt from Step 1. To continue
debugging, repeat Step 2.

Connecting a Second Computer Through a Serial Port

This section explains how to use the SERIAL command and SERIAL.EXE to connect a
second computer through a serial port. SERIAL.EXE is an MS-DOS program that lets the
second computer act like a dumb terminal, displaying output and accepting keyboard input.

Note: You can also use the program SERIAL.EXE with a modem. If you want to use SoftICE
over a modem, refer to Chapter 10: Using SoftICE with a Modem on page 147.

To configure SoftICE to work with a second computer, do the following:

1 If you are running SoftICE under Windows 95, indicate the Communications port you
intend to use (Com1, Com2, Com3, or Com4) to connect the local and remote PCs. If
you are using Windows NT, go to Step 2. SoftICE automatically determines your serial
connection when you use Windows NT.

To set the communications port, do the following:

• Start Symbol Loader.

• Choose SoftICE Initialization settings from the Edit menu.

• Click the Remote Debugging tab.

• Select the appropriate serial connection.

• Restart your computer.

For more information about setting the serial connection, refer to Configuring Remote
Debugging on page 159.
Using SoftICE 21

Installing SoftICE
2 Use a null modem cable to connect the local and remote PCs through their serial ports.
The following figure illustrates the wiring for the null cable.

3 Copy SERIAL.EXE from the SoftICE installation directory to your remote PC.

4 On the remote PC, use SERIAL.EXE [r] [com-port [baud-rate]] .
For example, SERIAL.EXE 1 57000 .

Use the r option when you are running in a DOS box in Windows NT on the remote
machine. The option disables FIFO and resets the baud-rate, stop bits, and parity.

The com-port is a serial port number from 1 to 4; the default is 1. If you specify a baud-
rate on the remote PC, it must match the baud-rate you specify on the local PC. Also, if
you specify a baud-rate, you must specify a com-port. If you do not specify a baud-rate,
the two PCs automatically negotiate a transmission rate.

The remote system waits for SoftICE on the local PC to initiate a connection sequence.

Pins
2
3
4
5
6
7
8
20

Pins
2
3
4
5
6
7
8
20

25-Pin Null-Modem Configuration

Pins
2
3
5
7
8
6
1
4

Pins
2
3
5
7
8
6
1
4

9-Pin Null-Modem Configuration
22 Using SoftICE

Solving Display Adapter Problems
5 Each time you start SoftICE, enter the following command on the local PC:
SERIAL [ON [com-port [baud-rate]] | OFF].
For example, SERIAL ON 1 57000 .

ON initiates a connection, while OFF terminates a remote session. The com-port and
baud-rate settings are described in the Step 2. Refer to the SoftICE Command Reference
for more information on using the SERIAL command.

If a connection is successfully established, the remote system displays the SoftICE screen.

Hint: To avoid entering this command each time you start SoftICE, add it to the SoftICE
Initialization string. Refer to Chapter 11: Customizing SoftICE on page 153.

Solving Display Adapter Problems

SoftICE can debug virtually anything in the system, because it does not call any operating
system services during critical times. To do this, SoftICE directly accesses the hardware devices
it requires. Although most of these devices are standardized, display adapters are not
standardized beyond Standard VGA. Thus, SoftICE provides its own support for most of the
common display adapters in their native, accelerated mode. The purpose of this support is to
switch from graphics mode to text mode and back.

It is possible that even if we do support your display adapter, it may still not work for you.
There are several reasons why this can occur:

• First and most common, the manufacturer may change the adapter. They may revise the
graphics chip or use a different RAMDAC.

• You may be running in a resolution and color depth combination that we did not test.

• The card’s device driver may be different than the one we use, changing the configuration
of the card in some subtle way that interferes with SoftICE.

If your display adapter is either unsupported or does not work with SoftICE, do the
following:

1 Verify that you tested all the display adapter settings that match either the model and
manufacturer or the chip set used.

2 NuMega might have updated display adapter support since you received it. To update
your display adapter support, do the following:

• Rename your existing SoftICE video driver and save it as a backup.

Under Windows95, the file siwvid.386 is located in your SoftICE installation
directory; under Windows NT, the file siwvid.sys is located in \system32\drivers
within your NT installation directory.
Using SoftICE 23

Installing SoftICE
• Download the most current video driver (SIWVID95.ZIP for Windows 95 and
SIWVIDNT.ZIPfor Windows NT) from the NuMega FTP or BBS site, as follows:

à FTP: ftp.numega.com, pub/tech/file name

à BBS: (603)595-0386,file file name

The file name is case specific, so be sure to note the capitalization of the file name.

• Unzip the display adapter driver file and place it in the appropriate installation
directory.

• Click the Display Adapter Setup icon in the SoftICE program group to run the
Display Adapter Setup.

3 Send e-mail to tech@numega.com, stating that you have a video-related problem. Be sure
to include the following information:

• Complete brand and model name of the card, and the approximate date of purchase.

• Resolution and color depth selected for your Windows screen.

• If known, the part number of the graphics chip on the card.

• If known, the part number of the RAMDAC chip on the card.

4 Try one of these display alternatives:

• Select STANDARD VGA (640x480 pixels) for both your Windows and SoftICE
display adapter settings. Your display adapter should function in VGA mode, thus
eliminating compatibility problems. NuMega recommends this as a short-term
solution.

• Use a secondary monochrome card and monitor. This is an inexpensive and popular
solution that many developers use.

• Use a second computer connected through the serial port as the SoftICE screen. This
option is suitable for laptop computers.

• Use a secondary VGA card and monitor. A few display adapters can support this
multiple-card option.

Refer to SoftICE Display Options on page 12 for an explanation of each of these options.
24 Using SoftICE

We will now discuss in a little more detail
the struggle for existence.

à Charles Darwin
3 SoftICE Tutorial

Introduction 27

Loading SoftICE 27

Building the GDIDEMO Sample Application 28

Loading the GDIDEMO Sample Application 29

Controlling the SoftICE Screen 30

Tracing and Stepping through Source Code 31

Viewing Local Data 32

Setting Point-and-Shoot Breakpoints 32

Setting a One-Shot Breakpoint 32

Setting a Sticky Breakpoint 33

Using SoftICE Informational Commands 34

Using Symbols and Symbol Tables 36

Setting a Conditional Breakpoint 37

Setting a BPX Breakpoint 37

Editing a Breakpoint 38

Setting a Read-Write Memory Breakpoint 39
Using SoftICE 25

SoftICE Tutorial
26 Using SoftICE

Introduction
Introduction

This tutorial gives you hands-on experience debugging a Windows application to teach you
the fundamental steps for debugging applications and drivers. During this debugging session,
you will learn how to do the following:

• Load SoftICE

• Build an application

• Load the application source and symbol files

• Trace and step through source code and assembly language

• View local data and structures

• Set point-and-shoot breakpoints

• Use SoftICE informational commands to explore the state of the application

• Work with symbols and symbol tables

• Modify a breakpoint to use a conditional expression

Each section in the tutorial builds upon the previous sections, so you should perform them in
order.

This tutorial uses the GDIDEMO application as its basis. GDIDEMO provides a
demonstration of GDI functionality. GDIDEMO is located in the
\EXAMPLES\GDIDEMO directory on your CDROM. GDIDEMO is also available under
\mstools\samples\win32\GDIDEMO. If you use the GDIDEMO on the CDROM, copy it
to your hard drive.

You can substitute a different sample application or an application of your own design. The
debugging principles and features of SoftICE used in this tutorial apply to most applications.

Note: The examples is this tutorial are based on Windows NT. If you are using Windows 95,
your output may vary slightly.

Loading SoftICE

If you are running SoftICE under Windows 95 or under Windows NT in Boot, System, or
Automatic mode, SoftICE automatically loads when you start or reboot your PC. If you are
running SoftICE in Manual Startup mode under Windows NT, SoftICE does not load
automatically.
Using SoftICE 27

SoftICE Tutorial
To load SoftICE for Windows 95, enter the command WINICE. To load SoftICE for
Windows NT, do one of the following:

• Select START SOFTICE.

• Enter the command: NET START NTICE

Note: Once you load SoftICE, you cannot deactivate it until you reboot your PC.

To verify that SoftICE is loaded, press the SoftICE hot key sequence Ctrl-D. The SoftICE
screen should appear. To return to the Windows operating system, use the X (exit) or G
(go to) command (F5).

Building the GDIDEMO Sample Application

The first step in preparing to debug a Windows application is to build it with debug
information. The makefile for the sample application GDIDEMO is already set up for this
purpose.

To build the sample program, perform the following steps:

1 Open a DOS shell.

2 Change to the directory that contains the sample code.

3 Execute the NMAKE command:

C:\MSTOOLS\SAMPLES\WIN32\GDIDEMO>NMAKE

If GDIDEMO is located in another directory, change the path as appropriate.
28 Using SoftICE

Loading the GDIDEMO Sample Application
Loading the GDIDEMO Sample Application

Loading an application entails creating a symbol file from the application’s debug information
and loading the symbol and source files into SoftICE. To Load the GDIDEMO application,
perform the following steps:

1 Start Symbol Loader.

The Symbol Loader window appears.

2 Either choose OPEN MODULE from the File menu or click the OPEN button.

The Open window appears.

3 Locate GDIDEMO.EXE and click Open.

4 Either choose LOAD from the Module menu or click the LOAD button to load
GDIDEMO.

Symbol Loader translates the debug information into a .NMS symbol file, loads the
symbol and source files, starts GDIDEMO, pops up the SoftICE screen, and displays the
source code for the file GDIDEMO.C.
Using SoftICE 29

SoftICE Tutorial
Controlling the SoftICE Screen

The SoftICE screen is your central location for viewing and debugging code. It provides up to
seven windows and one help line to let you view and control various aspects of your
debugging session. By default, it displays the following:

• Locals window—Displays and expand variables allocated on the stack.

• Code window—Displays source code or unassembled instructions.

• Command window—Enters user commands and display information.

• Help line—Provides information about SoftICE commands and shows the active address
context.

1 Look at the contents of the Code window. Note that SoftICE is displaying the WinMain
routine at line 34. By default, SoftICE creates a breakpoint and stops at the first main
module it encounters when loading your application.

2 To see all the source files that SoftICE loaded, enter the FILE command with the wild
card character:

:FILE *

SoftICE displays the source files for GDIDEMO: draw.c, maze.c, xform.c, poly.c,
wininfo.c, dialog.c, init.c, bounce.c, and gdidemo.c. The Command window varies in
size depending upon the number of lines used by open windows, so you might not see all
these file names. To display the remaining file names, press any key. (Refer to Chapter 5:
Navigating Through SoftICE on page 69 for information about resizing windows.)

3 Many SoftICE windows can be scrolled. If you have a mouse, you can click on the scroll
arrows. If not, SoftICE provides key sequences that let you scroll specific windows. Try
these methods for scrolling the Code window:

Scroll the Code Window Key Sequence Mouse Action

Scroll to the previous page. PageUp Click the innermost up scroll arrow

Scroll to the next page. PageDown Click the innermost down scroll arrow

Scroll to the previous line. UpArrow Click the outermost up scroll arrow

Scroll to the next line. DownArrow Click the outermost down scroll arrow

Scroll left one character. Ctrl-LeftArrow Click the left scroll arrow

Scroll right one character. Ctrl-RightArrow Click the right scroll arrow
30 Using SoftICE

Tracing and Stepping through Source Code
4 Enter the U command followed by EIP to disassemble the instructions for the current
instruction pointer.

:U EIP

You can also use the . (dot) command to accomplish the same thing:

:.

Tracing and Stepping through Source Code

The following steps show you how to use SoftICE to trace through source code:

1 Enter the T (trace) command or press the F8 key to trace one instruction.

:T

The F8 key is the
default key for the T
(trace) command.

Execution proceeds to the next source line and highlights it. At this point, the following
source line should be highlighted:

if(!hPrevInst)

2 The Code window is currently displaying source code. However, it can also display
disassembled code or mixed (both source and disassembled) code. To view mixed code,
use the SRC command (F3).

:SRC

Note that each source line is followed by its assembler instructions.

3 Press F3 once to see disassembled code, then again to return to source code.

4 Enter the T command (F8) to trace one instruction.

Execution proceeds until it reaches the line that executes the RegisterAppClass function.

As demonstrated in these steps, the T command executes one source statement or assembly
language instruction. You can also use the P command (F10) to execute one program step.
Stepping differs from tracing in one crucial way. If you are stepping and the statement or
instruction is a function call, control is not returned until the function call is complete.

Hint: The T command does not trace into a function call if the source code is not available.
A good example of this is Win32 API calls. To trace into a function call when source
code is not available, use the SRC command (F3) to switch into mixed or assembly
mode.
Using SoftICE 31

SoftICE Tutorial
Viewing Local Data

The Locals window displays the current stack frame. In this case, it contains the local data for
the WinMain function. The following steps illustrate how to use the Locals window:

1 Enter the T command to enter the RegisterAppClass function. The Locals window is
now empty because local data is not yet allocated for the function.

The RegisterAppClass function is implemented in the source file INIT.C. SoftICE
displays the current source file in the upper left corner of the Code window.

2 Enter the T command again.

The Locals window contains the parameter passed to the RegisterAppClass (hInstance)
and a local structure wndClass. The structure tag wndClass is marked with a plus sign
(+). This plus sign indicates that you can expand the structure to view its contents.

Note: You can also expand character strings and arrays.

3 If you have a Pentium-class processor and a mouse, double-click the structure
WNDCLASSA to expand it. To collapse the structure wndClass, double-click its
contents.

4 To use the keyboard to expand the structure: press Alt-L to move the cursor to the Locals
window, use the UpArrow or DownArrow to move the highlight bar to the structure, and
press Enter. Press Enter again to collapse it.

Setting Point-and-Shoot Breakpoints

This section shows you how to set two handy types of point-and-shoot breakpoints: one-shot
and sticky breakpoints.

Setting a One-Shot Breakpoint

The following steps demonstrate how to set a one-shot breakpoint. A one-shot breakpoint
clears after the breakpoint is triggered.

1 To shift focus to the Code window, either use your mouse to click in the window or press
Alt-C.

If you wanted to shift focus back to the Command window you could press Alt-C again.
32 Using SoftICE

Setting Point-and-Shoot Breakpoints
2 Either use the Down arrow key, the down scroll arrow, or the U command to place the
cursor on line 61, the first call to the Win32 API function RegisterClass. If you use the U
command, specify the source line 61 as follows:
:U .61

SoftICE places source line 61 at the top of the Code window.

3 Use the HERE command (F7) to execute to line 61.

The HERE command executes from the current instruction to the instruction that
contains the cursor. The HERE command sets a one-shot breakpoint on the specified
address or source line and continues execution until that breakpoint triggers. When the
breakpoint is triggered, SoftICE automatically clears the breakpoint so that it does not
trigger again.

The following current source line should be highlighted:

if(!RegisterClass(&wndClass))

Note: You can do the same thing by using the G (go) command and specifying the line
number or address to which to execute:
:G .61

Setting a Sticky Breakpoint

The following steps demonstrate another type of point-and-shoot breakpoint: the sticky
breakpoint, which does not clear until you explicitly clear it.

The F9 key is the
default key for the
BPX command.

1 Find the next call to RegisterClass that appears on source line 74. With the cursor on line
74, enter the BPX command (F9) to set an execution breakpoint. The BPX command
sets an execution breakpoint by inserting an INT3 instruction into the code. Note that
the line is highlighted when you set a breakpoint.

2 Press the F9 key to clear the breakpoint.

If you are using a Pentium-class processor and you have a mouse, you can double-click on
a line in the Code window to set or clear a breakpoint.

3 Set a breakpoint on line 74, then use the G or X command (F5) to execute the
instructions until the breakpoint triggers:

:G

When the INT3 instruction is executed, SoftICE pops up.

Unlike the HERE command, which sets a one-shot breakpoint, the BPX command sets a
sticky breakpoint. A sticky breakpoint remains until you clear it.
Using SoftICE 33

SoftICE Tutorial
4 To view information about breakpoints that are currently set, use the BL command:

:BL
00) BPX #0137:00402442

Note: The address you see might be different.

From the output of the BL command, one breakpoint is set on code address 0x402442.
This address equates to source line 74 in the current file INIT.C.

5 You can use the SoftICE expression evaluator to translate a line number into an address.
To find the address for line 74, use the ? command:
:? .74

void * = 0x00402442

6 The RegisterAppClass function has a relatively straightforward implementation, so it is
unnecessary to trace every single source line. Use the P command with the RET
parameter (F12) to return to the point where this function was called:

:P RET

The RET parameter to the P command causes SoftICE to execute instructions until the
function call returns. Because RegisterAppClass was called from within WinMain,
SoftICE pops up in WinMain on the statement after the RegisterAppClass function call.
The following source line in WinMain should be highlighted:

msg.wParam = 1;

7 Enter the BC command with the wild card parameter to clear all the breakpoints:

BC *

Using SoftICE Informational Commands

SoftICE provides a wide variety of informational commands that detail the state of an
application or the system. This section teaches you about two of them: H (help) and CLASS.

1 The H and Class commands work best when you have more room to display
information, so use the WL command to close the Locals window. Closing this window
automatically increases the size of the Command window.
34 Using SoftICE

Using SoftICE Informational Commands
2 The H command provides general help on all the SoftICE commands or detailed help on
a specific command. To view detailed help about the CLASS command, enter CLASS as
the parameter to the H command.

:H CLASS

Display window class information
CLASS [-x] [process | thread | module | class-name]
ex: CLASS USER

The first line of help provides a description of the command. The second line is the
detailed use, including any options and/or parameters the command accepts. The third
line is an example of the command.

3 The purpose of the RegisterAppClass function is to register window class templates that
are used by the GDIDEMO application to create windows. Use the CLASS command to
examine the classes registered by GDIDEMO.

:CLASS GDIDEMO

Note: This example shows only those classes specifically registered by the GDIDEMO
application. Classes registered by other Windows modules, such as USER32, are
omitted.

The output of the CLASS command provides summary information for each window class
registered on behalf of the GDIDEMO process. This includes the class name, the address of
the internal WINCLASS data structure, the module which registered the class, the address of
the default window procedure for the class, and the value of the class style flags.

Note: For more specific information on window class definitions, use the CLASS command
with the -X option, as follows:
:CLASS -X

Class Name Handle Owner Wndw Proc Styles

------------------Application Private------------------

BOUNCEDEMO A018A3B0 GDIDEMO 004015A4 00000003

DRAWDEMO A018A318 GDIDEMO 00403CE4 00000003

MAZEDEMO A018A280 GDIDEMO 00403A94 00000003

XFORMDEMO A018A1E8 GDIDEMO 00403764 00000003

POLYDEMO A018A150 GDIDEMO 00402F34 00000003

GDIDEMO A018A0C0 GDIDEMO 004010B5 00000003
Using SoftICE 35

SoftICE Tutorial
Using Symbols and Symbol Tables

Now that you are familiar with using SoftICE to step, trace, and create point-and-shoot style
breakpoints, it is time to explore symbols and tables. When you load symbols for an
application, SoftICE creates a symbol table that contains all the symbols defined for that
module.

1 Use the TABLE command to see all the symbol tables that are loaded:

:TABLE
GDIDEMO [NM32]
964657 Bytes Of Symbol Memory Available

The currently active symbol table is listed in bold. This is the symbol table used to resolve
symbol names. If the current table is not the table from which you want to reference
symbols, use the TABLE command and specify the name of the table to make active:

:TABLE GDIDEMO

2 Use the SYM command to display the symbols from the current symbol table. With the
current table set to GDIDEMO, the SYM command produces output similar to the
following abbreviated output:

:SYM
.text(001B)

001B:00401000 WinMain
001B:004010B5 WndProc
001B:004011DB CreateProc
001B:00401270 CommandProc
001B:00401496 PaintProc
001B:004014D2 DestroyProc
001B:004014EA lRandom
001B:00401530 CreateBounceWindow
001B:004015A4 BounceProc
001B:004016A6 BounceCreateProc
001B:00401787 BounceCommandProc
001B:0040179C BouncePaintProc

This list of symbol names is from the .text section of the executable. The .text section is
typically used for procedures and functions. The symbols displayed in this example are all
functions of GDIDEMO.
36 Using SoftICE

Setting a Conditional Breakpoint
Setting a Conditional Breakpoint

One of the symbols defined for the GDIDEMO application is the LockWindowInfo
function. The purpose of this routine is to retrieve a pointer value that is specific to a
particular instance of a window.

To learn about conditional and memory breakpoints, you will perform the following steps:

• Set a BPX breakpoint on the LockWindowInfo function.

• Edit the breakpoint to use a conditional expression, thus setting a conditional
breakpoint.

• Set a memory breakpoint to monitor access to a key piece of information, as described in
Setting a Read-Write Memory Breakpoint on page 39.

Setting a BPX Breakpoint

Before setting the conditional breakpoint, you need to set a BPX-style breakpoint on
LockWindowInfo.

1 Set a BPX-style breakpoint on the LockWindowInfo function:

:BPX LockWindowInfo

When one of the GDIDEMO windows needs to draw information in its client area, it
calls the LockWindowInfo function. Every time the LockWindowInfo function is called,
SoftICE pops up to let you debug the function. The GDIDEMO windows continually
updates, so this breakpoint goes off quite frequently.

2 Use the BL command to verify that the breakpoint is set.

3 Use either the X or G command to exit SoftICE.

SoftICE should pop up almost immediately on the LockWindowInfo function.
Using SoftICE 37

SoftICE Tutorial
Editing a Breakpoint

From the LockWindowInfo function prototype on source line 47, you can see that the
function accepts one parameter of type HWND and returns a void pointer type. The
HWND parameter is the handle to the window that is attempting to draw information
within its client area. At this point, you want to modify the existing breakpoint, adding a
conditional breakpoint to isolate a specific HWND value.

1 Before you can set the conditional expression, you need to obtain the HWND value for
the POLYDEMO window. The HWND command provides information about
application windows. Use the HWND command and specify the GDIDEMO process:

:HWND GDIDEMO

The following example illustrates what you should see if you are using Windows NT. If
you are using Windows 95, your output will vary.

The POLYDEMO window handle is bold and underlined. This is the window handle
you want to use to form a conditional expression. If the POLYDEMO window does not
appear in the HWND output, exit SoftICE using the G or X commands (F5) and repeat
Step 1 until the window is created.

The value used in this example is probably not the same value that appears in your
output. For the exercise to work correctly, you must use the HWND command to obtain
the actual HWND value on your system.

Using the POLYDEMO window handle, you can set a conditional expression to monitor
calls to LockWindowInfo looking for a matching handle value. When the
LockWindowInfo function is called with the POLYDEMO window handle, SoftICE
pops up.

Handle Class WinProc TID Module

07019C GDIDEMO 004010B5 2D GDIDEMO

 100160 MDIClient 77E7F2F5 2D GDIDEMO

 09017E BOUNCEDEMO 004015A4 2D GDIDEMO

 100172 POLYDEMO 00402F34 2D GDIDEMO

 11015C DRAWDEMO 00403CE4 2D GDIDEMO
38 Using SoftICE

Setting a Read-Write Memory Breakpoint
2 Because you already have a breakpoint set on LockWindowInfo, use the BPE command
(Breakpoint Edit) to modify the existing breakpoint:

:BPE 0

When you use the BPE command to modify an existing breakpoint, SoftICE places the
definition of that breakpoint onto the command line so that it can be easily edited. The
output of the BPE command appears:

:BPX LockWindowInfo

The cursor appears at the end of the command line and is ready for you to type in the
conditional expression.

3 Remember to substitute the POLYDEMO window handle value that you found using
the HWND command instead of the value (100172) used in this example. Your
conditional expression should appear similar to the following example. The conditional
expression appears in bold type.

:BPX LockWindowInfo IF ESP->4 == 100172

Note: Win32 applications pass parameters on the stack and at the entry point of a
function; the first parameter has a positive offset of 4 from the ESP register. Using
the SoftICE expression evaluator, this is expressed in the following form: ESP->4.
ESP is the CPU stack pointer register and the “->” operator causes the lefthand side
of the expression (ESP) to be indirected at the offset specified on the righthand side
of the expression (4). For more information on the SoftICE expression evaluator
refer to Chapter 8: Using Expressions on page 125 and for referencing the stack in
conditional expressions refer to Conditional Breakpoints on page 114.

4 Verify that the breakpoint and conditional expression are correctly set by using the BL
command.

5 Exit SoftICE using the G or X command (F5).

When SoftICE pops up, the conditional expression will be TRUE.

Setting a Read-Write Memory Breakpoint

We set the original breakpoint and subsequently the conditional expression so that we could
obtain the address of a data structure specific to this instance of the POLYDEMO window.
This value is stored in the window’s extra data and is a global handle. The LockWindowInfo
function retrieves this global handle and uses the Win32 API LocalLock to translate it into a
pointer that can be used to access the window’s instance data.
Using SoftICE 39

SoftICE Tutorial
1 Obtain the pointer value for the windows instance data by executing up to the return
statement on source line 57:

:G .57

2 Win32 API functions return 32-bit values in the EAX register, so you can use the BPMD
command and specify the EAX register to set a memory breakpoint on the instance data
pointer.

:BPMD EAX

The BPMD command uses the hardware debug registers provided by Intel CPUs to
monitor reads and writes to the Dword value at a linear address. In this case, you are
using BPMD to trap read and write accesses to the first Dword of the window instance
data.

3 Use the BL command to verify that the memory breakpoint is set. Your output should
look similar to the following:

:BL
00) BPX LockWindowInfo IF ((ESP->4)==0x100172)
01) BPMD #0023:001421F8 RW DR3

Breakpoint index 0 is the execution breakpoint on LockWindowInfo and breakpoint
index 1 is the BPMD on the window instance data.

4 Use the BD command to disable the breakpoint on the LockWindowInfo.

:BD 0

SoftICE provides the BC (breakpoint clear) and BD (breakpoint disable) commands to
clear or disable a breakpoint. Disabling a breakpoint is useful if you want to re-enable the
breakpoint later in your debugging session. If you are not interested in using the
breakpoint again, then it makes more sense to clear it.

5 Use the BL command to verify that the breakpoint on LockWindowInfo is disabled.
SoftICE indicates that a breakpoint is disabled by placing an asterisk (*) after the
breakpoint index. Your output should appear similar to the following:

:BL
00) * BPX _LockWindowInfo IF ((ESP->4)==0x100172)
01) BPMD #0023:001421F8 RW DR3

Note: You can use the BE command to re-enable a breakpoint:
:BE breakpoint-index-number
40 Using SoftICE

Setting a Read-Write Memory Breakpoint
6 Exit SoftICE using the G or X command.

When the POLYDEMO window accesses the first Dword of its window instance data,
the breakpoint triggers and SoftICE pops up.

When SoftICE pops up due to the memory breakpoint, you are in the PolyRedraw or
PolyDrawBez function. Both functions access the nBezTotal field at offset 0 of the
POLYDRAW window instance data.

Note: The Intel CPU architecture defines memory breakpoints as traps, which means that
the breakpoint triggers after the memory has been accessed. In SoftICE, the
instruction or source line that is highlighted is the one after the instruction or
source line that accessed the memory.

7 Clear the breakpoints you set in this section by using the BC command:

:BC *

Note: You can use the wildcard character (*) with the BC, BD, and BE commands to
clear, disable, and enable all breakpoints.

8 Exit SoftICE using the G or X command.

The operating system terminates the application.

Congratulations on completing your first SoftICE debugging session. In this session, you
traced through source code, viewed locals and structures, and set point-and-shoot,
conditional, and read-write memory breakpoints. SoftICE provides many more advanced
features. The SoftICE commands ADDR, HEAP, LOCALS, QUERY, THREAD, TYPES,
WATCH, and WHAT are just a few of the many SoftICE commands that help you debug
smarter and faster. Refer to the SoftICE Command Reference for a complete explanation of all
the SoftICE commands.
Using SoftICE 41

SoftICE Tutorial
42 Using SoftICE

The devil is in the details.

à Descartes
4 Loading Code into
SoftICE

Debugging Concepts 45

Preparing to Debug Applications 45

Preparing to Debug Device Drivers and VxDs 46

Loading SoftICE Manually 46

Loading SoftICE for Windows 95 46

Loading SoftICE for Windows NT 47

Building Applications with Debug Information 48

Using Symbol Loader to Translate and Load Files 49

Modifying Module Settings 51

Modifying General Settings 52

Modifying Translation Settings 53

Modifying Debugging Settings 54

Specifying Program Source Files 55

Deleting Symbol Tables 56

Using Symbol Loader From a DOS Prompt 56
Using SoftICE 43

Loading Code into SoftICE
Using the Symbol Loader Command-Line Utility 57

NMSYM Command Syntax 58

Using NMSYM to Translate Symbol Information 59

Using NMSYM to Load a Module and Symbol Information 62

Using NMSYM to Load Symbol Tables or Exports 65

Using NMSYM to Unload Symbol Information 66

Using NMSYM to Save History Logs 67

Getting information about NMSYM 67
44 Using SoftICE

Debugging Concepts
Debugging Concepts

SoftICE allows you to debug Windows applications and device drivers at source level. To
accomplish this, SoftICE uses a utility, called Symbol Loader, to translate the debug
information from your compiled module into a .NMS symbol file. Then Symbol Loader can
load the .NMS file and, optionally, source into SoftICE, where you can debug it.

The point in time at which you need to load the .NMS file depends on whether you are
debugging a module that runs after the operating system boots or a device driver or static
VxD that loads before the operating system initializes. If you are loading a device driver or
VxD, SoftICE pre-loads the module’s symbols and source when it initializes. If you are
debugging a module or component that runs after the operating system boots, you can use
Symbol Loader to load symbols when you need them.

This chapter explains how to use Symbol Loader to load your module into SoftICE. It also
describes how to use Symbol Loader from a DOS prompt to automate many of the most
common tasks it performs and how to use the Symbol Loader command-line utility
(NMSYM) to create a batch process to translate and load symbol information.

Note: Symbol Loader only supports Windows applications. To debug MS-DOS applications
use the UTIL16 directory.

Preparing to Debug Applications

The following general steps explain how to prepare to debug modules and components that
run after the operating system boots. These modules include EXEs, DLLs, dynamic VxDs,
and OCXs. The sections that follow explain how to perform these steps in detail.

1 Build the module with debug information.

2 If SoftICE is not already loaded, load SoftICE.

3 Start Symbol Loader.

4 Click the OPEN button to open the module you want to debug.

5 Use Symbol Loader to translate the debug information into a .NMS symbol file and load
the source and symbol files into SoftICE for you.
Using SoftICE 45

Loading Code into SoftICE
Preparing to Debug Device Drivers and VxDs

The following general steps explain how to prepare to debug device drivers or static VxDs that
load before the operating system fully initializes. The sections that follow explain how to
perform these steps in detail.

1 Build the application with debug information.

2 If SoftICE is not already loaded, load SoftICE.

3 Start Symbol Loader.

4 Click the OPEN button to open the module you want to debug.

5 Select the PACKAGE SOURCE WITH SYMBOL TABLE setting within the Symbol Loader
translation settings. Refer to Modifying Module Settings on page 51.

6 Click the TRANSLATE button to create a new .NMS symbol file.

7 Modify the SoftICE initialization settings to pre-load the debug information for the VxD
or device driver on startup. Refer to Pre-loading Symbols and Source Code on page 157.

8 Reboot your PC.

Loading SoftICE Manually

SoftICE does not load automatically under the following configurations:

• If you did not run WINICE.EXE from the AUTOEXEC.BAT before starting
Windows 95.

• When you set SoftICE for Windows NT to Manual Startup mode.

If you are using these configurations, you need to load SoftICE manually. The following
sections describe how to load SoftICE manually for Windows 95 and Windows NT.

Loading SoftICE for Windows 95

To load SoftICE for Windows 95, load it from the DOS command line. SoftICE
automatically runs Windows 95 after it initializes. Use the following command syntax.
46 Using SoftICE

Loading SoftICE Manually
Command Syntax

WINICE [/HST n] [/TRA n] [/SYM n] [/M]
[/LOAD[x] name]
[/EXP name][drive:\path\WIN.COM
[Windows-command-line]]

Where the following are optional switches.

Hint: You can specify these switches in the Initialization string. Refer to Modifying SoftICE
Initialization Settings on page 155.

Loading SoftICE for Windows NT

To load SoftICE for Windows NT, do one of the following:

• Select START SOFTICE.

• Enter the command: NET START NTICE

Note: Once you load SoftICE, you cannot deactivate it until you reboot your PC.

Optional Switch Definition

/EXP name Adds exports from the DLL or Windows application specified by name to the
SoftICE export list. This lets you symbolically access these exported symbols.

/HST n Increases the size of the command recall buffer, where n is a decimal number
that represents the number of kilobytes. The default is 8KB.

/LOAD name[x] Loads symbol and source, where name is the complete path and file name for a
VxD, DOS T&SR, DOS loadable device driver, DOS program, Windows driver,
Windows DLL, or Windows program that was built with symbols. If x is present,
source is not loaded.

/M Directs SoftICE output to the secondary monochrome monitor, bypassing any
initial VGA programming.

You can also use this optional switch for serial debugging by specifying /M on
the command line and including a serial command in the Initialization string.

/SYM n Allocates a symbol table, where n is a decimal number that represents the
number of kilobytes. The default is 0KB.

/TRA n Increases the size of the back trace history buffer, where n is a decimal number
that represents the number of kilobytes. The default is 8KB.
Using SoftICE 47

Loading Code into SoftICE
Building Applications with Debug Information

The following compiler-specific information is provided as a convenience. Consult your
compiler or assembler documentation for more information about building your application
with debug information.

Compiler Generating Debugging Information

Borland C++ 4.5 and 5.0 To generate Borland’s standard debug information:

• Compile with /v

• Link with /v

Delphi 2.0 To generate Delphi’s standard debug information:

Compile with the following:

• -V to include debug information in the executable

• -$W+ to create stack frames

• -$D+ to create debug information

• -$L+ to create local debug symbols

• -$O- to disable optimization
48 Using SoftICE

Using Symbol Loader to Translate and Load Files
Using Symbol Loader to Translate and Load Files

Before SoftICE can debug your application, .DLL or driver, you need to create a symbol file
for each of the modules you want to debug, then load these files into SoftICE. Symbol Loader
makes this procedure quick and easy. Symbol Loader lets you identify the module you want to
load, then automatically creates a corresponding symbol file. Finally, Symbol Loader loads the
symbol, source, and executable files into SoftICE for you. By default, Symbol Loader loads all
the files referenced in the debug information. To limit the source files Symbol Loader loads,
refer to Specifying Program Source Files on page 55.

MASM 6.11 To generate Codeview debug information:

• Assemble with /Zi /COFF
• Use Microsoft’s 32-bit LINK.EXE to link with

/DEBUG /DEBUGTYPE:CV /PDB:NONE

Microsoft Visual C++ 2.x, 4.0,
4.1, 4.2, and 5.0

To generate Program Database (PDB) debug information:

• Compile with Program Database debug information, using the com-
mand-line option /Zi

• Use Microsoft’s linker to link with
/DEBUG /DEBUGTYPE:CV

Note: VxDs require you to generate PDB debug information.

To generate Codeview debug information:

• Compile with C7-compatible debug information, using the com-
mand-line option /Z7

• Use Microsoft’s linker to link with
/DEBUG /DEBUGTYPE:CV /PDB:NONE

Note: If you are using the standard Windows NT DDK make proce-
dure, use the following environment variables: NTDEBUG=ntsd
and NTDEBUGTYPE=windbg.

Symantec C++ 7.2 The Symantec compiler produces Codeview debug information by
default. All that is required is to enable the output of debug info:

• Compile with -g
Other qualifiers are available, for example,
-gh , -gf , and -gg

• Link with /CO

Watcom C++ 10.5 To generate Codeview full debug information:

• Compile with -hc -d3

• Link with DEBUG CODEVIEW OPTION CVPACK
Using SoftICE 49

Loading Code into SoftICE
To use Symbol Loader to load a module, do the following:

1 Start Symbol Loader.

2 Either choose OPEN MODULE from the File menu or click the OPEN button.

3 Select the file you want to load from the Open dialog box and click OPEN.

4 If you open a .SYM file, Symbol Loader displays a dialog box that asks you whether or
not the file is a 32-bit file. If it is a 32-bit file, click YES; otherwise, click NO.

Due to a file format restriction in .SYM files, SoftICE cannot determine whether .SYM
files are 16-bit or 32-bit.

Hint: Once you open a file, it is added to the list of most recently opened files at the bottom
of the File menu. Use this list to reopen a file quickly.

5 Either choose LOAD from the Module menu or click the LOAD button to load the open
file.

Symbol Loader translates your application’s debug information to a .NMS symbol file.
Then, Symbol Loader loads the symbol and source files into SoftICE. If you are loading
an .EXE file, SoftICE starts the program and sets a breakpoint at the first main module
(WinMain, Main, or DllMain) it encounters.

The information Symbol Loader loads depends on the Translation and Debugging
settings. Refer to Modifying Module Settings on page 51 for more information about
modifying Translation and Debugging settings.

Button bar

SoftICE status bar
50 Using SoftICE

Modifying Module Settings
Modifying Module Settings

The Symbol Loader uses a series of settings to control how it translates and loads files. These
settings are categorized as follows:

• General—specifies command-line arguments and source file search paths.

• Translation—specifies which combination of symbols (publics, type information,
symbols, or symbols and source) Symbol Loader translates.

• Debugging—specifies the types of files (symbols and executables) Symbol Loader loads
into SoftICE, as well as any default actions SoftICE performs at load time.

These settings are available on a per module basis. Thus, changing a particular setting applies
to the current module only. When you open a different module, Symbol Loader uses the pre-
established defaults.

To change the default file settings for a module, do the following:

1 Open the file if it is not already open.

Hint: The name of the current open file is listed in the Symbol Loader title bar.

2 Choose SETTINGS from the Module menu.

3 Click the tab that represents the settings you want to modify.

See the sections that follow for more information about specific settings for each tab.

4 When you are done modifying the settings, click OK.

5 Load the file to apply your changes.
Using SoftICE 51

Loading Code into SoftICE
Modifying General Settings

The General settings allow you to set command-line arguments and specify source file search
paths.

The following sections describe the General settings.

Command line arguments

Use COMMAND LINE ARGUMENTS to specify command-line arguments to pass to your
program.

Source file search path for this program

Use SOURCE FILE SEARCH PATH FOR THIS PROGRAM to determine the search path SoftICE
uses to locate files associated with this application. If Symbol Loader cannot locate the files
within this search path, it uses the contents of the DEFAULT SOURCE FILE SEARCH PATH to
expand its search.

Default source file search path

Use DEFAULT SOURCE FILE SEARCH PATH to determine the search path SoftICE uses to
locate files in general. This setting is a global setting.

Note that if you use the SOURCE FILE SEARCH PATH FOR THIS PROGRAM setting to specify
the search path for a specific program, Symbol Loader uses the search path you specified for
the application before looking in this global search path.

Prompt for missing source files

Use PROMPT FOR MISSING SOURCE FILES to determine if Symbol Loader prompts you when
it cannot find a source file. This setting is global and is turned on by default.
52 Using SoftICE

Modifying Module Settings
Minimize loader on successful load

Use MINIMIZE LOADER ON SUCCESSFUL LOAD to minimize Symbol Loader automatically
after you load an .EXE file. This setting is a global setting and it is turned on by default.

Modifying Translation Settings

Translation settings determine the type of information Symbol Loader translates when it
creates .NMS symbol files and specifies if your source code is stored in the symbol file. These
settings determine how much memory is needed to debug your program and they are listed in
order from least to most amount of symbol memory required.

The following sections describe the Translation settings.

Publics only

PUBLICS ONLY provides public (global) symbol names. Neither type information nor source
code are included.

Type information only

This setting provides type information only. Use this setting to provide type information for
data structures that are reverse engineered.

Symbols only

SYMBOLS ONLY provides global, static, and local symbol names in addition to type
information. Source code is not included.
Using SoftICE 53

Loading Code into SoftICE
Symbols and source code

SYMBOLS AND SOURCE CODE provides all available debugging information, including source
code and line number information. This setting is enabled by default.

Package source with symbol table

This setting saves your source code with the symbol information in the .NMS file. You might
want to include your source file in the symbol file under the following circumstances:

• Loading source code at boot time

SoftIce does not look for code files at boot time. If you need to load source code for a
VxD or Windows NT device driver, select PACKAGE SOURCE WITH SYMBOLS TABLE.
Then, modify the SoftICE initialization settings to load the debug information for the
VxD or device driver on startup. Refer to Pre-loading Symbols and Source Code on page
157.

• Debugging on a system that does not have access to your source files

If you want to debug your application on a system that does not have access to your
source files, select PACKAGE SOURCE WITH SYMBOLS and copy the .NMS file to the
other system.

Warning: If you select PACKAGE SOURCE WITH SYMBOL TABLE, your source code is
available to anyone who accesses the symbol table. If you do not want others to
have access to your source code and you provide the .NMS file with your
application, turn off this option.

Modifying Debugging Settings

The Debugging settings determine what type of information to load and whether or not to
stop at your module’s entry point.
54 Using SoftICE

Specifying Program Source Files
The following sections describe the Debugging settings.

Load symbol information only

LOAD SYMBOL INFORMATION ONLY loads the .NMS symbol file, but does not load the
executable image. It also loads the associated source files if you selected SYMBOLS AND
SOURCE CODE in the Translation options. By default, Symbol Loader selects this setting for
.DLL, .SYS, and VxD file types.

Load executable

LOAD EXECUTABLE loads your executable and .NMS file. It also loads the associated source
files if you selected SYMBOLS AND SOURCE CODE in the Translation options. By default,
Symbol Loader selects this setting for .EXE files.

Stop at WinMain, Main, DllMain, etc.

This setting creates a breakpoint at the first main module SoftICE encounters as it loads your
application.

Specifying Program Source Files

By default, all program source files that are referenced in the debug information are loaded.
Depending on your needs, loading all program source files may not be necessary. Also, if the
number of source files is large, loading all source files may not be practical.

To avoid loading unnecessary source files, SoftICE lets you use a .SRC file to specify which
source files to load for an executable module. A .SRC file is a text file that you create in the
directory where your executable resides. The filename of the .SRC file is the same as the
filename of the executable, but with a .SRC extension. The .SRC file contains a list of the
source files that are to be loaded, one per line.

Example: If you have an executable named PROGRAM.EXE, you would create a .SRC file,
PROGRAM.SRC. The contents of the PROGRAM.SRC file might look like the
following:
FILE1.C

FILE3.CPP

FILE4.C

Assuming that FILE2.C was a valid program source file, it would not be loaded
because it does not appear in the .SRC file. FILE1.C, FILE3.CPP, and FILE4.C
would be loaded.
Using SoftICE 55

Loading Code into SoftICE
Deleting Symbol Tables

Every time you translate your source code, Symbol Loader creates a .NMS symbol file in the
form of a symbol table. When you load your module, Symbol Loader stores the table in
memory until you either delete the table or reboot your PC.

To delete a symbol table, do the following:

1 Choose Symbol Tables form the Edit menu.

2 Click the Table ID for the table you want to delete and click Remove.

Hint: Use the headers to sort the symbol tables by Table ID, Symbol Table, Type, SYM=,
NMS Size, or Version. The list of symbol tables is sorted in ascending order.

Using Symbol Loader From a DOS Prompt

Symbol Loader (LOADER32.EXE) supports a command-line interface that lets you use
many of its features from a DOS prompt without viewing Symbol Loader’s graphical
interface. Thus, you can automate many of the most common tasks it performs.

Before you use LOADER32.EXE from a DOS prompt, use Symbol Loader’s graphical
interface to set the default search paths and to specify translation and debugging settings for
each module you plan to load. Symbol Loader save these settings for each file and uses them
when you use Loader 32 to load or translate the files from a DOS prompt. Refer to Modifying
Module Settings on page 51.

To run LOADER32.EXE, either set your directory to the directory that contains
LOADER32.EXE or specify the SoftICE directory in your search path.

Use headers to sort the list of symbol tables.

Select the Table ID for the table you want to remove, then click Remove.
56 Using SoftICE

Using the Symbol Loader Command-Line Utility
Command Syntax

Use the following syntax for LOADER32.EXE:

LOADER32 [[option(s)] file-name]

Where file-name is the name of the file you want to translate or load and options are as
follows.

Follow these guidelines when specifying the command syntax:

• Options are not required. If you specify a file name without an option, LOADER32.EXE
starts the Symbol Loader graphical interface and opens the file.

• Specify both the /TRANSLATE and /LOAD options to force LOADER32.EXE to
translate the module before loading it.

• Do not use the /EXPORTS or the /LOGFILE options with any other option.

Note: If you specify an option, LOADER32.EXE does not display the Symbol Loader
graphical interface unless it encounters an error. If LOADER32.EXE encounters an
error, it displays the error in the Symbol Loader window.

Using the Symbol Loader Command-Line Utility

NMSYM is a utility program that lets you create a batch process to translate and load symbol
information for use with SoftICE or other programs that use the NM32™ symbol table file
format. NMSYM provides a series of command options analogous to features within SoftICE
Symbol Loader (Loader32.exe) that perform the following functions:

• Translate and load symbol information for an individual module

• Load and unload groups of symbol tables and module exports

Option Definition

/EXPORTS Loads exports for a file.

/LOAD Translates the module into a .NMS file, if one does not already exist, and loads it
into SoftICE. If you previously set Translation and Debugging settings for this file,
LOADER32.EXE uses these settings. If you did not specify these settings,
LOADER32.EXE uses the defaults for the module type.

/LOGFILE Saves the SoftICE history buffer to a log file.

/NOPROMPT Instructs LOADER32.EXE not to prompt you if it cannot find a source file.

/PACKAGE Saves your source code with the symbol information in the .NMS file.

/TRANSLATE Translates the module into a .NMS file using the Translation settings you set the
last time you translated the file or, if none exist, the default translation for the
module type.
Using SoftICE 57

Loading Code into SoftICE
• Save the SoftICE history buffer to a file

• Obtain product version information and help

The following table lists the options for each of these functions:

NMSYM Command Syntax

Use the following syntax for NMSYM.EXE:

NMSYM [option(s)] <module-name>

Where:

• Options are specified by using a slash (/) followed by the option name.

• Module-name is the name of the module you want to translate or load.

The following example shows a valid command line:

NMSYM /TRANSLATE C:\MYPROJ\MYPROJECT.EXE

Using Option and File-list Specifiers

Many options include additional option and file-list specifiers. Option specifiers modify an
aspect of the option and file-list specifiers specify operations on a group of files.

The syntax for option specifiers is as follows:

/option:<option-specifier>[,<option-specifier>]

Function NMSYM Options

Translate and load symbol information for an individual
module

/TRANSLATE or /TRANS
/LOAD
/SOURCE
/ARGS
/OUTPUT or /OUT
/PROMPT

Load and unload groups of symbol tables and module exports /SYMLOAD or /SYM
/EXPORTS or /EXP
/UNLOAD

Save the SoftICE history buffer to a file /LOGFILE or /LOG

Obtain product version information and help /VERSION or /VER
/HELP or /H
58 Using SoftICE

Using the Symbol Loader Command-Line Utility
The option is followed by a colon (:), which, in turn, is followed by a comma delimited list of
specifiers. The following example uses the /TRANSLATE option with the SOURCE and
PACKAGE specifiers to instruct NMSYM to translate source and symbols, then package the
source files with the NMS symbol table:

/TRANSLATE:SOURCE,PACKAGE

The syntax for file-list specifiers is as follows:

/option:<filename|pathname>[;<filename|pathname>]

The following example uses the /SOURCE option with three path-list specifiers. NMSYM
searches the paths in the path-list specifiers to locate source code files during translation and
loading:

/SOURCE:c:\myproj\i386;c:\myproj\include;c:\msdev\include;

Using NMSYM to Translate Symbol Information

The primary purpose of NMSYM is to take compiler generated debug information for a
module and translate it into the NM32 symbol format, then place that information into a
.NMS symbol file. To accomplish this, use the following options and parameters on the
NMSYM command line:

1 Use the /TRANSLATE option to specify the type of symbol information you wish to
generate

2 Use the /SOURCE option to specify the source paths that NMSYM searches to locate
source code files.

3 If you want to specify an alternate filename for the .NMS file, use the /OUTPUT option.

4 Specify the name of the module that you want to translate.

NMSYM /TRANSLATE C:\MYPROJ\MYPROJECT.EXE

The following sections describe the translation options. Use these options to translate symbol
information for an individual module.

/TRANSLATE:<translation-specifier-list>

The /TRANSLATE option lets you specify the type of symbol information you wish to
produce, as well as whether source code is packaged with the symbol file. Other options
include the ability to force the translation to occur, even if the symbol file is already up to
date.

The /TRANSLATE option takes a variety of option specifiers, including symbol-information,
source code packaging, and a miscellaneous specifier, ALWAYS. The following sections
describe these specifiers.
Using SoftICE 59

Loading Code into SoftICE
Symbol-information Specifiers

The following table lists optional symbol-information specifiers that determine what symbol
information is translated. Use one symbol-information specifier only. If you do not use a
specifier, NMSYM defaults to SOURCE.

Note: Note: Source code information does not include the source files themselves. It is
information about the source code files, such as their names and line-number
information.

Source Code Packaging Specifiers

Optional source code packaging specifiers determine whether or not NMSYM attaches source
code to the .NMS symbol file. By default, NMSYM does the following:

• Packages the source code with the .NMS symbol files for device driver modules, because
they load before the operating system fully initializes.

• Does not package the source code for applications that run after the operating system
boots.

Use the following source code packaging specifiers to override these defaults:

Note: If you package the source code with the .NMS symbol file, your code is available to
anyone who accesses the symbol table.

Symbol-information
Specifier

Description

PUBLICS Only public (global) symbols are included. Static functions and variables are
excluded. This option is similar to the symbol information that can be found
in a MAP file. It produces the smallest symbol tables.

TYPEINFO Only the type information is included. Symbol information is excluded. Use
this option when you produce advanced type information without the
original source code or debug information.

SYMBOLS Includes all symbol and type information. Source code and line-number
information is excluded. This specifier produces smaller symbol tables.

SOURCE This is the default translation type. All symbol, type, and source code
information is included.

Source Code
Packaging Specifier

Description

PACKAGE Include source files with the .NMS symbol file.

NOPACKAGE Do not include source files with the .NMS symbol file.
60 Using SoftICE

Using the Symbol Loader Command-Line Utility
ALWAYS Specifier

By default, NMSYM does not translate the symbol information if it is current. Use the
ALWAYS specifier to force NMSYM to translate the symbol information regardless of its
status.

Examples using the /TRANSLATE Option

The following example specifies a module name without the /TRANSLATON option. Thus,
the translation is performed using the default options for the module type.

NMSYM myproj.exe

Note: For Win32 applications or DLLs, the default is
/TRANSLATE:SOURCE,NOPACKAGE. For driver modules the default is
/TRANSLATE:SOURCE:PACKAGE.

The following example translates symbol information for a VxD. It uses the SYMBOLS
specifier to exclude information related to the source code and the /NOPACKAGE specifier
to prevent NMSYM from packaging source code.

NMSYM /TRANSLATE:SYMBOLS,NOPACKAGE c:\myvxd.vxd

The following example uses the default options for the module type and uses the
/ALWAYS specifier to force NMSYM to translate the symbol information into a .NMS
symbol file.

NMSYM /TRANSLATE:ALWAYS myproj.exe

/SOURCE:<path-list>

Use the /SOURCE option to specify the source paths that NMSYM should search to locate
source code files. At translation time (PACKAGE only) or module load time (/LOAD or /
SYMLOAD), NMSYM will attempt to locate all the source files specified within the NMS
symbol table. It will do a default search along this path to locate them.

The path-list specifier is one or more paths concatenated together. Each path is separated
from the previous path by a semi-colon ';'. The /SOURCE option may be specified one or
more times on a single command-line. The order of the /SOURCE statements, and the order
of the paths within the path-list determines the search order.

Examples Using the /SOURCE Option

The following example specifies two paths for locating source files.

NMSYM /TRANSLATE:PACKAGE /SOURCE:c:\myproj\i386;c:\myproj\include;
myproj.exe

The following example specifies two sets of source paths.

NMSYM /TRANS:PACKAGE /SOURCE:c:\myproj\i386;c:\myproj\include; /
SOURCE:c:\msdev\include; myproj.exe
Using SoftICE 61

Loading Code into SoftICE
The following example specifies the base project source path and uses the DOS replacement
operator % to take the path for include files from the standard environment variable
INCLUDE=. The path-list expands to include c:\myproj\i386 and every path listed in the
INCLUDE= environment variable.

NMSYM /TRANS:PACKAGE /SOURCE:c:\myproj\i386;%INCLUDE% myproj.exe

Note: In the event that a source code file cannot be found, the /PROMPT switch determines
whether the file will be skipped, or if you will be asked to help locate the file.

/OUTPUT:<filename>

NMSYM derives the output file name for the NMS symbol table by taking the root module
name and appending the standard file extension for NM32 symbol tables, NMS. Secondly,
the path for the NMS file is also the same as path to the module being translated. If you need
to change the default name or location of the NM32 symbol table file, then use the
/OUTPUT option to specify the location and name. If you specify a name, but do not specify
a path, the path to the module will be used.

Examples using the /OUTPUT option

In the following example the path of the NMS file is changed to a common directory for
NM32 symbol tables.

NMSYM /OUTPUT:c:\NTICE\SYMBOLS\myproj.nms c:\myproj\myproject.exee

/PROMPT

NMSYM is a command-line utility designed to allow tasks of symbol translation and loading
to be automated. As such, you probably do not desire to be prompted for missing source files,
but there are cases where it might be useful. Use the /PROMPT option to specify that
NMSYM should ask for your help in locating source code files when you use the /
TRANSLATE:PACKAGE, /LOAD, or /SYMLOAD options.

Using NMSYM to Load a Module and Symbol Information

Like translation, the /LOAD functionality of NMSYM is designed to work on a specific
module that is specified using the module-name parameter. This module is one which will be
translated and loaded. If you do not need to translate or load and execute a module, then the
/SYMLOAD option may be a better choice.

An example of using NMSYM to translate, load, and execute a module follows:

NMSYM /TRANS:PACKAGE /LOAD:EXECUTE myproj.exe

The next example shows the alternate functionality of loading a group of pre-translated
symbol files using the /SYMLOAD option:

NMSYM /SYMLOAD:NTDLL.DLL;NTOSKRNL.NMS;MYPROJ.EXE
62 Using SoftICE

Using the Symbol Loader Command-Line Utility
In the preceding example, three symbol tables will be loaded, but translation will not be
performed, even if the modules corresponding NMS is out of date. Also, MYPROJ.EXE will
not be executed so that it can be debugged.

/LOAD:<load-specifier-list>

The /LOAD option allows you to load a modules NM32 symbol table into SoftICE, and
optionally, execute the module so it can be debugged.

You can use the following specifiers with the /LOAD option:

Load Type specifiers:

One of the following options may be selected to determine how the module and its symbol
information will be loaded. The default specifier is dependent on the type of the module, and
for executables is EXECUTE. For non-executable module types, the default is SYMBOLS.

Break On Load specifiers

To enable or disable having a breakpoint set at the modules entry-point, use one of the
following specifiers.

The ability to explicitly turn module entry breakpoints on or off is provided because the
default setting of this option is dependent upon the type of the module. For applications the
BREAK option is the default. For other module types NOBREAK is the default.

NOSOURCE specifier

NOSOURCE prohibits the load of source code files, even if the symbol table includes a
source package or line-number information.

Load Type Specifiers Definition

SYMBOLS Only symbol information for the module will be loaded. You may set
breakpoints using this symbol information, and when the module is loaded
the breakpoints will trigger as appropriate.

EXECUTE Symbol information is loaded and the executable is loaded as a process so
that it may be debugged.

Break on Load
Specifiers

Definition

BREAK Set a breakpoint on the module’s entry-point (WinMain, DllMain, or
DriverEntry).

NOBREAK Do not set a breakpoint on the modules entry-point.
Using SoftICE 63

Loading Code into SoftICE
Examples using the /LOAD option

In the following example NMSYM will load (and by default) execute the module
MYPROJ.EXE. If the symbol table is not current, then a default translation for the module
type will be performed:

NMSYM /LOAD MYPROJ.EXE

The next example specifies that the program is to be executed, but a breakpoint should not be
set on the program entry-point. Once again, if a translation needs to be performed, it will be
the default translation for the module type.

NMSYM /LOAD:NOBREAK MYPROJ.EXE

The next example specifies that only symbol information should be loaded, and explicitly
specifies the PUBLICS translation type:

NMSYM /TRANS:PUBLIC /LOAD:SYMBOLS MYPROJ.DLL

/ARGS:<program-arguments>

The /ARGS option is used to specify the program arguments that will be passed to an
executable module. This option is only useful when used with the /LOAD:EXECUTE
option.

The program-arguments is a string that defines the program arguments. If it contains white-
space, then you should surround the entire option in double quotes (").

Examples using the /ARGS option

In the following example, the MYPROJ.EXE module is going to be loaded for debugging,
and the arguments passed to the application are TEST.RTF.

NMSYM /LOAD:EXECUTE /ARGS:test.rtf myproj.exe

In the next example the command-line is a bit more complicated, so we are going to wrap the
entire option in double-quotes ("):

NMSYM /LOAD:EXECUTE "/ARGS:/PRINT /NOLOGO test.rtf" myproj.exe

Using the double quotes around the option prevents NMSYM from becoming confused by
the white-space that appears within the program arguments: /PRINT^/NOLOGO^test.rtf.
64 Using SoftICE

Using the Symbol Loader Command-Line Utility
Using NMSYM to Load Symbol Tables or Exports

In addition to the translation and loading functions, NMSYM also supplies options that allow
for batch loading and unloading of both symbol tables and exports. This is extremely useful
for loading an "environment" or related set of symbol table files. For example, if you start
SoftICE manually you can use NMSYM to give you the equivalent functionality of the
SoftICE Initialization Settings for Symbols and Exports.

For example, you could use a batch file similar to the following to control which symbol tables
are loaded. The batch file takes one optional parameter that determines whether the files to be
loaded are for driver or application debugging (application is the default). In both cases we are
loading exports for the standard Windows modules.

net start ntice
echo off

if "%1" == "D" goto dodriver
if "%1" == "d" goto dodriver

REM *** These are for debugging applications *** set
SYMBOLS=ntdll.dll;shell32.dll;ole32.dll;win32k.sys goto doload

:dodriver REM *** These are for debugging drivers *** set
SYMBOLS=hal.dll;ntoskrnl.exe;

:doload

NMSYM /SYMLOAD:%SYMBOLS% /EXPORTS:kernel32.exe;user32.exe;gdi32.exe

Another benefit of using NMSYM is that it does not require explicit path information to find
NMS files or modules. If you do not specify a path, and the specified module or NMS file
cannot be found within the current directory or the symbol table cache, then a search will be
executed along the current path.

/SYMLOAD:<module-list>

The /SYMLOAD option is used to load one or more symbol tables into SoftICE. The symbol
tables must have been previously translated since this function does not perform translation.

The module-list specifier may specify NMS files or there associated module, with or without
explicit paths to the files. If you do not specify an explicit path for the module, then NMSYM
will attempt to find the file in the current directory, in the symbol table cache, or on the
system path. If you specify an absolute or relative path for the module then no search will be
performed.

Examples using the /SYMLOAD option

The following example uses the /SYMLOAD option to load the symbol tables typically used
for debugging OLE programs. It does not specify any paths, so a search will be performed (as
necessary).

NMSYM /SYMLOAD:ole32.dll;oleaut32.dll;olecli32.dll
Using SoftICE 65

Loading Code into SoftICE
/EXPORTS:<module-list>

The /EXPORTS option is used to load exports for one or more modules into SoftICE.
Exports are lightweight symbol information for API's exported from a module (usually a
DLL, but EXEs can also contain exports.)

The module-list specifier may specify modules with or without explicit paths. If you do not
specify an explicit path for the module, then NMSYM will attempt to find the file in the
current directory, in the system directory, or on the system path. If you specify a absolute or
relative path for the module then no search will be performed.

Examples using the /EXPORTS option

The following example uses the /EXPORTS option to load the exports for modules typically
used when debugging OLE programs. It does not specify any paths, so a search will be
performed, as necessary.

NMSYM /EXPORTS:ole32.dll;oleaut32.dll;olecli32.dll

Using NMSYM to Unload Symbol Information

NMSYM provides the /UNLOAD option so that you can programmatically remove symbol
information for a related set of symbol tables and/or exports. This can be used to save memory
used by unneeded symbol tables.

/UNLOAD:<module-list>

The module-list specifier may specify either symbol tables or export table names. The name of
a symbol table or export table is derived from the root module-name, without path or
extension information. For flexibility and to support future table naming conventions you
should specify any path or extension information that is relevant to uniquely distinguish the
table.

Examples using the /UNLOAD option

The following example is the reverse of the examples provided in the /SYMLOAD and /
EXPORTS sections:

NMSYM /UNLOAD:ole32.dll;oleaut32.dll;olecli32.dll

SoftICE will find the table that corresponds to the specified module name and remove the
table (if possible) and free any memory in use by that symbol table.

Note: SoftICE attempts to unload a symbol table by default. If the specified symbol table
does not exist then SoftICE attempts to unload an export table with that name.
66 Using SoftICE

Using the Symbol Loader Command-Line Utility
Using NMSYM to Save History Logs

NMSYM provides the ability to save the SoftICE history buffer to a file using the /LOGFILE
option. This operation is equivalent to the Symbol Loader 'Save SoftICE History As..."
option. NMSYM supports the ability to append to an existing file using the APPEND
specifier.

/LOGFILE:<filename>[,logfile-specifier-list]

The filename specifier is the path and filename of the file the history buffer will be written to.
If no path is specified the current directory will be assumed.

LogFile specifiers

 APPEND lets you append the current contents of the History buffer to an existing file. The
default is to overwrite the file.

 Examples using the /LOGFILE option

The following example will create/overwrite the MYPROJ.LOG file with the current contents
of the SoftICE history buffer:

NMSYM /LOGFILE:myproj.log

The next example will create/append the current contents of the SoftICE history buffer to the
file MYPROJ.LOG:

NMSYM /LOGFILE:myproj.log,APPEND

Warning: NMSYM will not ask you if you want to overwrite an existing file. It will
automatically do so.

Getting information about NMSYM

To get information about NMSYM, use the /VERSION and /HELP options.

/VERSION

Use the /VERSION option to obtain version information for NMSYM, SoftICE, as well as
the translator and symbol engine version numbers. For SoftICE, Loader32 and NMSYM to
work together correctly, these versions must be compatible. Each product negotiates and
verifies version numbers with the other products to insure that each can work together.

/HELP

Use the /HELP option to obtain command-line syntax, options, specifiers and option/
specifier syntax.
Using SoftICE 67

Loading Code into SoftICE
68 Using SoftICE

It has long been an axiom of mine that the little things are
infinitely the most important.

à Sir Arthur Conan Doyle
5 Navigating Through
SoftICE

Introduction 71

Popping Up the SoftICE Screen 71

Disabling SoftICE at Startup 71

Using the SoftICE Screen 72

Resizing the SoftICE Screen 73

Controlling SoftICE Windows 73

Copying and Pasting Data 75

Entering Commands From the Mouse 75

Obtaining Help 76

Using the Command Window 77

Scrolling the Command Window 77

Entering Commands 77

Recalling Commands 80

Using Run-Time Macros 81

Saving the Command Window History Buffer to a File 82

Associated Commands 83

Using the Code Window 83

Controlling the Code Window 83

Viewing Information 85

Entering Commands From the Code Window 86
Using SoftICE 69

Navigating Through SoftICE
Using the Locals Window 87

Controlling the Locals Window 87

Expanding and Collapsing Stacks 88

Associated Commands 88

Using the Watch Window 89

Controlling the Watch Window 89

Setting an Expression to Watch 90

Viewing Information 90

Expanding and Collapsing Typed Expressions 90

Associated Commands 91

Using the Register Window 91

Controlling the Register window 91

Viewing Information 91

Editing Registers and Flags 92

Associated Commands 93

Using the Data Window 93

Controlling the Data Window 93

Viewing Information 94

Changing the Memory Address and Format 95

Editing Memory 95

Assigning Expressions 95

Associated Commands 96

Using the FPU Stack Window 96

Viewing Information 96
70 Using SoftICE

Introduction
Introduction

This chapter describes how to use the SoftICE screen and its windows. The SoftICE windows
are described in order of importance.

If you are new to SoftICE, read this chapter thoroughly, then use it as a reference. If you are
familiar with SoftICE, read the sections that describe how to use the Locals and Watch
windows as well as the sections that describe how to use the mouse.

Popping Up the SoftICE Screen

Once SoftICE loads, it automatically pops up the SoftICE screen on the following occasions:

• When SoftICE loads. By default, the SoftICE initialization string contains the X (Exit)
command, so it immediately closes after opening. Refer to Modifying SoftICE
Initialization Settings on page 155.

• When you press Ctrl-D. This hot-key sequence toggles the SoftICE screen on and off.

• When breakpoint conditions are met.

• When SoftICE traps a system fault.

• When a system crash in Windows NT results in “Blue Screen” Mode.

When the SoftICE screen pops up, all background activity on your computer comes to a halt,
all interrupts are disabled, and SoftICE performs all video and keyboard I/O by accessing the
hardware directly.

Hint: Use the ALTKEY command to change the SoftICE default pop-up key (Ctrl-D).

Disabling SoftICE at Startup

If you installed SoftICE as a boot or system driver under NT, you can disable it at startup by
pressing the Escape key when the following message appears at the bottom of the “Blue Text”
display:

Press Esc to cancel loading SoftICE

If you installed SoftICE as an automatic driver under Windows NT, you cannot disable it
unless you change your startup mode and reboot your PC. In the unlikely event that SoftICE
causes difficulties during booting, select the following option from the Windows NT boot
menu:

Last known good configuration
Using SoftICE 71

Navigating Through SoftICE
Using the SoftICE Screen

The SoftICE screen serves as the central location for debugging your code. It provides seven
windows and a Help line to view and control various aspects of your debugging session. These
windows are listed in order of importance:

By default, SoftICE displays the Help line and the Command, Code, and Locals windows.
You can open and close the remaining windows as necessary. The following figure illustrates a
typical SoftICE screen:

SoftICE Windows Use

Command window Enter user commands and display information.

Code window Display unassembled instructions and/or source code.

Locals window Display the current stack frame.

Watch window Display the value of the variables watched with the WATCH command.

Register window Display and edit the current state of the registers and flags.

Data window Display and edit memory.

FPU Stack window Display the current state of the FPU (Floating Point Unit) stack /MMX
registers.

Help line Provide information about SoftICE commands.

Register window

Data window

Code window

Command window

Locals window

Watch window

Help line

Scroll arrows
72 Using SoftICE

Using the SoftICE Screen
Resizing the SoftICE Screen

By default, the SoftICE screen uses a total of 25 lines to display information in the various
windows. If you are using any display option other than a monochrome screen, you can use
the LINES command to switch the total lines for the SoftICE screen to 43, 50, or 60 lines
instead of the standard 25 lines. Monochrome screens limit you to 25 lines.

Example: LINES 60

Controlling SoftICE Windows

You can do the following to the SoftICE windows:

• Open and close all the windows except the Command window.

• Resize the Code, Data, Locals, and Watch windows.

• Scroll the Code, Command, Data, Locals, and Watch windows.

SoftICE provides two methods for controlling these windows: mouse and keyboard input.

Opening and Closing Windows

To open a SoftICE window, use the appropriate command listed in the following table. To
close a window, either repeat the command or use your mouse, if you have one available.To
use your mouse to close a window, select the line below the window you want to close and
drag it up past the top line of the window.

Resizing Windows

To resize a window, drag the line at the bottom of the window you want to resize either up or
down. You can also use the same commands that you use for opening and closing windows to
resize the windows. Simply type the command followed by a decimal number that represents
the number of lines you want to display in the window.

Example: WD 7

Command Window

WC Code

WD Data

WF FPU Stack

WL Locals

WR Register

WW Watch
Using SoftICE 73

Navigating Through SoftICE
Note that the number of lines in the Command window automatically increases or decreases
when you resize a window. Although you cannot explicitly resize the Command widow,
changing the size of other windows in your display automatically resizes the Command
window.

Moving the Cursor Among Windows

The cursor is located in the Command window by default. To move the cursor to another
window, click the mouse in the window where you want to place the cursor. If the cursor is in
the Command or Code windows, you can use one of the Alt key combinations in the
following table to move the cursor. Repeat the same Alt key combination to return the cursor
to the Command or Code window.

Scrolling windows

You can scroll the Code, Command, Data, Locals, and Watch windows. The FPU Stack and
Register windows are not scrollable, because they are limited to four and three lines
respectively.

SoftICE provides two methods for scrolling windows: key sequences and mouse scroll arrows.
The following table describes how to use scroll arrows and key sequences to scroll windows.

Note: The key sequences for some windows vary. For example, some windows do not let you
jump to the first or last lines of the file. See the sections that describe the individual
windows for specific information about scrolling particular windows.

Window Alt Key Combination

Code Alt-C

Data Alt-D

FPU Stack Cannot move the cursor to the FPU Stack window.

Locals Alt-L

Register Alt-R

Watch Alt-W

Scroll Direction and Distance Key Sequence Mouse Action

Scroll the window to the previous page. PageUp Click the innermost up scroll arrow

Scroll the window to the next page. PageDown Click the innermost down scroll arrow

Scroll the window to the previous line. UpArrow Click the outermost up scroll arrow

Scroll the window to the next line. DownArrow Click the outermost down scroll arrow
74 Using SoftICE

Using the SoftICE Screen
Copying and Pasting Data

If you have a mouse, you can copy and paste data among windows. This is useful for copying
addresses and data into expressions. To copy and paste data, do the following:

1 Select the data you want to copy.

2 Press the right mouse button to display the following list of available commands.

3 Click the left mouse button to select the command (Copy, Copy and Paste, or Paste) you
want to use. The following table describes these commands:.

Entering Commands From the Mouse

The mouse provides shortcuts for entering the D, U, and WHAT commands. (Refer to the
SoftICE Command Reference for more information about these commands.)

To use your mouse to enter one of these commands, do the following:

1 Select the data you want the command to act upon.

For example, select an expression to identify.

2 Click the right mouse button to display the list of available commands.

Jump to the first line of the source file. Home Not supported.

Jump to the last line of the source file. End Not supported.

Scroll the window left one character. LeftArrow Click the left scroll arrow.

Scroll the window right one character. RightArrow Click the right scroll arrow.

Scroll Direction and Distance Key Sequence Mouse Action

Command Description

Copy Copies the selected item to the Copy-and-Paste buffer.

Copy and Paste Copies the selected item and pastes it to the location of the cursor.

Paste Pastes the contents of the Copy-and-Paste buffer to the location of the cursor.
Using SoftICE 75

Navigating Through SoftICE
3 Click the left mouse button to select the command you want to use. The following table
describes these commands.

Obtaining Help

SoftICE provides you with two methods for obtaining help while debugging your module:
the Help line and H command.

Using the Help Line

The bottom line of the screen always contains the Help line. This line updates as you type
characters on the command line. The Help line provides several different types of
information, as follows:

• When the characters you type do not specify a complete command, the Help line
displays all the valid commands that start with the characters you typed.

• When the characters you type match a command, the Help line displays a description of
the command.

• If you enter a space after a command, the Help line displays the syntax for that
command.

• If you are editing in the Register or Data windows, the Help line contains the valid
editing keys for that window.

Using the H Command

Use the H command to provide general help on all the SoftICE commands or detailed help
on a specific command. To display a brief description of all the SoftICE commands by
function, enter the H command with no parameters.

To display detailed help on a specific command, type the H command and specify the
command on which you want to receive help as the parameter. SoftICE displays a description
of the command, the command syntax, and an example.

Mouse
Command

SoftICE
Command
Equivalent

Description

Display D Displays the memory contents at the specified address.

Un-Assemble U Displays either source code or unassembled code at the specified
address.

What WHAT Determines if a name or expression is a known type.

Previous N/A Undoes the previous mouse command.
76 Using SoftICE

Using the Command Window
The following example displays help for the BPINT command:

:H BPINT
Breakpoint on interrupt
BPINT interrupt-number {IF expression] [DO bp-action]
ex: BPINT 50

Using the Command Window

The Command window lets you enter commands and displays information about your
debugging session. The contents of the Command window are saved in the SoftICE history
buffer.

The Command window is always open and is at least two lines long. Although you cannot
explicitly resize the Command widow, changing the size of other windows in your display
automatically resizes the Command window.

Scrolling the Command Window

To scroll the Command window, either use the scroll arrows or the following keys.

Entering Commands

You can enter commands whenever the cursor is in the Command window or the Code
window.

To enter a command, type the command and press the Enter key to execute it.

Hint: As you type characters, the Help line displays the list of valid commands that start with
those characters. When only one command displays, you can press the space bar to
complete the command automatically. SoftICE fills in the remaining characters of the
command followed by a trailing space.

Function Key

Scroll the history buffer to the previous page. PageUp

Scroll the history buffer to the next page. PageDown

Scroll the history buffer to the previous line. UpArrow

Scroll the history buffer to the next line. DownArrow
Using SoftICE 77

Navigating Through SoftICE
When you type most SoftICE commands in the Command window, related information
about the command automatically displays on the line beneath the command. If information
displays on the last line of the window, the window scrolls. If all the information cannot fit in
the window, the following prompt appears on the help line:

Any Key To Continue, ESC To Cancel

To disable this prompt, use the following command:

SET PAUSE OFF

Command Syntax

SoftICE commands share the following syntax and rules:

• All commands are text strings of one to six characters in length and are not case sensitive.

• All parameters are either ASCII strings or expressions.

• An address in SoftICE can be a selector:offset, a segment:offset, or just an offset.

• Expressions in SoftICE are comprised of the following:

• grouping symbols

• numbers in hexadecimal or decimal format

• addresses

• line numbers

• string literals

• symbols

• operators

• built-in functions

• registers.

Example: (1+2)*3 is an expression.

Any command that accepts a number or an address can accept an arbitrarily complex
expression. Use the ? command to display the value of an expression. In addition,
breakpoints can be conditionally based on the result of an expression; that is, the
breakpoint only triggers when the expression evaluates to non-zero (TRUE).
78 Using SoftICE

Using the Command Window
Using Function Keys

SoftICE provides several function key assignments to save you time when entering
commonly-used SoftICE commands. The following table lists these assignments.

You can modify the commands assigned to these keys or assign commands to additional
function keys. Refer to Modifying Keyboard Mappings on page 160.

Function Key Command Function

F1 H Display Help

F2 WR Display or hide the register window

F3 SRC Switch among source code, mixed code, and disassembled
code

F4 RS Show program screen

F5 X Go

F6 EC Move the cursor to or from the Code window

F7 HERE Execute to the cursor

F8 T Single step

F9 BPX Set an execution breakpoint on the current line

F10 P Step over

F11 G @SS:EIP Go to

F12 P RET Return from the procedure call

Shift-F3 FORMAT Change the format for the Data window

Alt-F1 WR Open or close the Register window

Alt-F2 WD Open or close the Data window

Alt-F3 WC Open or close the Code window

Alt-F4 WW Open or close the Watch window

Alt-F5 CLS Clear the Command window

Alt-F11 dd dataaddr->0 Indirect first dword in the Data window.

Alt-F12 dd dataaddr->4 Indirect second dword in the Data window.
Using SoftICE 79

Navigating Through SoftICE
Editing Commands

Use the following keys to edit the command line.

Recalling Commands

SoftICE remembers the last 32 commands you typed in the Command window. You can
recall these commands for editing and execution from within either the Command or Code
windows.

Use the following keys to recall a command from within the Command window.

Note: Prefixes are supported. For example, if you type the letter A, the UpArrow only cycles
through commands that start with the letter A.

Use the following keys to recall a command from within the Code window.

Editing Function Key

Move the cursor to column 0 of the command line. Home

Move the cursor past the last character of the command line. End

Toggle insert mode. When in insert mode, the cursor displays as a block cursor and
the characters entered are inserted at the current cursor position, shifting the text to
the right by one space. When not in insert mode, a character entered overwrites the
character at the cursor position.

Insert

Delete the character at the current cursor position and shift text to the left by one
space.

Delete

Delete the previous character. Bksp

Cancel command line. Esc

Left and right arrow keys move the cursor horizontally within the command line. Arrow Keys

Function Key

Get the previous command from the command history buffer. UpArrow

Get the next command from the command history buffer. DownArrow

Function Key

Get the previous command from the command history buffer Shift-
UpArrow

Get the next command from the command history buffer. Shift-
DownArrow
80 Using SoftICE

Using the Command Window
Using Run-Time Macros

Macros are user-defined commands that you can use in the same way as built-in commands.
The definition, or body, of a macro consists of a sequence of command invocations. The
allowable set of commands includes other user-defined macros and command-line arguments.

There are two ways to create macros. You can create run-time macros that exist until you
restart SoftICE or persistent macros that are saved and automatically loaded with SoftICE.
This section describes how to use run-time macros. Refer to Working with Persistent Macros on
page 162 for more information about creating and using persistent macros.

The following table shows how to create, delete, edit, and list run-time macros.

Hint: You can use the MACRO command with persistent macros to temporarily modify
them during run time. When you reload SoftICE, your persistent macros revert to
their original state.

The body of a macro is a sequence of SoftICE commands or other macros separated by
semicolons. You are not required to terminate the final command with a semicolon.
Command-line arguments to the macro can be referenced anywhere in the macro body with
the syntax %<parameter# >, where parameter# is a number between one and eight.

Example: The command MACRO asm = “a %1” d efines an alias for the A (ASSEMBLE)
command. The %1 is replaced with the first argument following asm or simply
removed if no argument is supplied.

If you need to embed a literal quote character (”) or a percent sign (%) within the macro body,
precede the character with a backslash character (\). To specify a literal backslash character, use
two consecutive backslashes (\\).

Note: Although it is possible for a macro to call itself recursively, it is not particularly useful,
because there is no programmatic way to terminate the macro. If the macro calls itself
as the last command of the macro (tail recursion), the macro executes until you use the
ESC key to terminate it. If the recursive call is not the last command in the macro, the
macro executes 32 times (the nesting limit).

Action Command

Create or modify a macro MACRO macro-name = “ command1;command2;…”

Delete a macro MACRO macro-name *

Delete all macros MACRO *

Edit a macro MACRO macro-name

List all macros MACRO
Using SoftICE 81

Navigating Through SoftICE
The following table shows some examples of run-time macros.

Saving the Command Window History Buffer to a File

The SoftICE history buffer contains all the information displayed in the Command window.
Saving the SoftICE history buffer to a file is useful for doing the following:

• Dumping large amounts of data or register values

• Disassembling code

• Listing breakpoints logged by the BPLOG expression

• Showing Windows messages logged by the BMSG command

• Saving debugging messages sent from user programs that call OutputDebugString and
kernel-mode programs that call KdPrint

Refer to History buffer size on page 156 for more information about changing the size of the
SoftICE history buffer.

To save the contents of the SoftICE history buffer to a file, do the following:

1 Make sure the information you want to save is displaying to the Command window, so
that it is saved in the History Buffer.

For example, before dumping data, remove the Data window to force the data to display
in the Command window.

2 Open Symbol Loader.

Run-Time Macro Commands Examples

MACRO Qexp = “addr explorer; Query %1” Qexp

Qexp 140000

MACRO 1shot = “bpx %1 do \”bc bpindex\”” 1shot eip

1shot @esp

MACRO ddt = “dd thread” ddt

MACRO ddp = “dd process” ddp

MACRO thr = “thread %1 tid” thr

thr -x

MACRO dmyfile =
“macro myfile = \”TABLE %1;file \%1\””

dmyfile mytable

myfile myfile.c
82 Using SoftICE

Using the Code Window
3 Either choose SAVE SOFTICE HISTORY AS... from the File menu or click the SAVE
SOFTICE HISTORY button.

4 Use the Save SoftICE History dialog box to determine the file name and location where
you want to save the file.

Associated Commands

The following command is associated with the Command window. Refer to the SoftICE
Command Reference for more information about using this command.

Using the Code Window

The Code window displays source code, disassembled code, or both source and disassembled
code (mixed). It also lets you set breakpoints. (Refer to Chapter 7: Using Breakpoints on page
105 for an explanation of how to set breakpoints.)

Controlling the Code Window

Use the following commands to control the Code window.

Command Function

SET [set variable] [ON | OFF] [value] Displays or sets user preferences.

Command Action

WC Opens and closes the Code window.

WC [num lines] Resizes the Code window.

Alt-C Moves the cursor into or out of the Code window.
Using SoftICE 83

Navigating Through SoftICE
Scrolling the Code Window

To scroll the Code window, either use the scroll arrows or the following keys when the cursor
is in the Code window.

You can also scroll the Code window when the cursor is in the Command window, as follows.

Function (from within the Code window) Key Sequence

Scroll the Code window to the previous page. PageUp

Scroll the Code window to the next page. PageDown

Scroll the Code window to the previous line. UpArrow

Scroll the Code window to the next line. DownArrow

Jump to the first line of the source file. Ctrl-Home

Jump to the last line of the source file. Ctrl-End

Scroll the Code window left one character (in
source mode only).

Ctrl-LeftArrow

Scroll the Code window right one character
(in source mode only).

Ctrl-RightArrow

Function (from within the Command
window)

Key

Scroll the Code window to the previous page. Ctrl-PageUp

Scroll the Code window to the next page. Ctrl-PageDn

Scroll the Code window to the previous line. Ctrl-UpArrow

Scroll the Code window to the next line. Ctrl-DownArrow

Jump to the first line of the source file. Ctrl-Home

Jump to the last line of the source file. Ctrl-End

Scroll the Code window left one character (in
source mode only).

Ctrl-LeftArrow

Scroll the Code window right one character
(in source mode only).

Ctrl-RightArrow
84 Using SoftICE

Using the Code Window
Viewing Information

The Code window provides three modes to display source code, disassembled code, or both.
The following table defines these modes.

To switch among the Code window modes, use the SRC command (F3).

Using Mixed and Code Modes

Each disassembled instruction in code or mixed mode contains the following fields.

Example: The following output shows a disassembled instruction:

00FD:00001DA1 56 PUSH ESI

Additionally, the SoftICE disassembler automatically provides these comments:

• INT 2E calls are commented with the kernel routine that will be called and the number
of parameters it takes. If you have loaded the symbols for NTOSKRNL and that is the
current symbol table, you will see the name of the OS routine rather than an address.

• If an instruction uses an immediate operand that matches a Windows NT status code,
the name of the status code displays as a comment.

• INT 21 calls are commented with their DOS function names.

• INT 31 calls are commented with their DPMI function names.

• VxD service names are shown as code labels where appropriate.

Code Mode Description

Source If source code is available, the source file displays in the Code window.

Mixed In mixed mode, both source lines and disassembled instructions display in the
Code window. Each source line is followed by its assembler instructions.

Code In code mode, only disassembled instructions display in the Code window.

Field Description

Location Hexadecimal address of the instruction. If there is a public code symbol for the
location, it displays on the line above the instruction.

Code bytes Actual hexadecimal bytes of the instruction. The default is to suppress the code
bytes because they are usually not needed. Use the SET CODE ON command to
display the code bytes.

Instruction Disassembled mnemonics of the instruction. This is the current assembly
language instruction. If any of the memory address references of the instruction
match a symbol, the symbol displays instead of the hexadecimal address. Use
SET SYMBOLS OFF to display hexadecimal addresses instead.

Comment Helpful comment from the disassembler.
Using SoftICE 85

Navigating Through SoftICE
Viewing Additional Information

In addition to source and disassembled code, the Code window displays the following
information:

• When SoftICE pops up, the instruction located at the current EIP is highlighted in bold.
If the instruction is a relative jump, the disassembler’s comment field contains either the
string JUMP or NO JUMP, indicating whether or not the jump will be taken. For the
JUMP string, an up or down arrow indicates where the jump is going: backwards (JUMP
­) or forwards (JUMP ¯). Use the arrow to determine which way to scroll the Code
window to view the target of the JUMP.

• The target of the JUMP instruction is always marked with a highlighted arrow indicator
(Þ) overlaying the selector portion of the address.

• If the instruction references a memory location, the effective address and the value at the
effective address display on the end of the code line. If the Register window is visible,
however, the effective address and the value at the effective address display in that
window beneath the flags field.

• If a breakpoint exists at any instruction in the Code window, the corresponding line
displays in bold text.

• The lines above and below the Code window show more information about the code:
Information above the Code window includes one of the following:

à Symbolname + Offset
à Source file name, if viewing source
à One of the following segment types:

V86 Code from a real-mode segment:offset address.
PROT16 Code from a 16-bit protected mode selector:offset address
PROT32 Code from a 32-bit protected mode selector:offset address

Information below the Code window includes one of the following:

à Windows module name, section name, and OFFSET if it is a 32-bit Windows
module. For example, KERNEL32!.Text + 002f

à Windows module name and segment number in parentheses if it is a 16-bit Windows
module. For example, Display (01)

à Owner name of the code segment if it is in V86 mode. For example, DOS.

Entering Commands From the Code Window

You can still enter commands when the cursor is in the Code window. After you type the first
letter of a command, the cursor moves down to the Command window. After you press Enter
and the command completes, the cursor moves back to the Code window. You can also use
function key commands while the cursor is in the Code window. Refer to Using the Command
Window on page 77 for more information about entering commands.
86 Using SoftICE

Using the Locals Window
The following commands are particularly useful.

Refer to the SoftICE Command Reference for more information about these commands.

Using the Locals Window

The Locals window displays the current stack. You can view the contents of structures, arrays,
and character strings within the stack by expanding them.

Controlling the Locals Window

Use the following commands to control the Locals window.

Command Function

. (Dot) View the instruction at the current EIP.

A address Assemble instructions directly into memory.

BPX (F9) Set point-and-shoot breakpoints.

FILE file-name Select the source file to view.

The filename can be a partial name. If you do not know the name of the
filename, enter FILE * to display all the files loaded for the symbol table.

HERE (F7) Set breakpoints that execute one time.

SET Display or set user preferences.

SRC Switch among the Code window modes: source, mixed, and code.

SS string Move the source display to the next occurrence of the specified string.

TABS tab-setting Set tabs for source file display.

U address Unassemble any code address.

If you specify a function name for the address parameter, SoftICE scrolls the Code
window to the function you specify.

Command Action

WL Opens and closes the Locals window.

WL [num lines] Resizes the Locals window.

Alt-L Moves the cursor into or out of the Locals window.
Using SoftICE 87

Navigating Through SoftICE
Scrolling the Locals Window

To scroll the Locals window, either use the scroll arrows or use Alt-L to move the cursor into
the Locals window, then use the following keys.

Expanding and Collapsing Stacks

You can expand structures, arrays, and character strings to display their contents. These items
are delineated with a plus sign (+) to indicate that you can expand them. To expand or
collapse an item, do the following:

• Pentium PCs only—Double-click the item.

• All PCs—Use Alt-L to enter the Locals window, scroll to the item, and press Enter.

Associated Commands

The following commands are associated with the Locals window. Refer to the SoftICE
Command Reference for more information about using these commands.

Function Key Sequence

Scroll the Locals window to the previous page. PageUp

Scroll the Locals window to the next page. PageDn

Scroll the Locals window to the previous line. UpArrow

Scroll the Locals window to the next line. DownArrow

Jump to first item. Home

Jump to last item. End

Scroll the Locals window left one character. LeftArrow

Scroll the Locals window right one character. RightArrow

Command Function

LOCALS Lists local variables from the current stack frame.

TYPES [type-name] Lists all types in the current context or lists all type information for the
type-name specified.
88 Using SoftICE

Using the Watch Window
Using the Watch Window

The Watch window lets you monitor the values of expressions that you set with the WATCH
command. Refer to the SoftICE Command Reference for more information about the WATCH
command.

Controlling the Watch Window

Use the following commands to control the Watch window.

Scrolling the Watch Window

To scroll the Watch window, either use the scroll arrows or use Alt-W to move the cursor into
the Watch window and use the following keys.

Command Action

WW Opens and closes the Watch window.

WW [num lines] Resizes the Watch window.

Alt-W Moves the cursor into or out of the Watch window.

Function Key Sequence

Scroll the Watch window to the previous page. PageUp

Scroll the Watch window to the next page. PageDown

Scroll the Watch window to the previous line. Arrow

Scroll the Watch window to the next line. DownArrow

Jump to first item. Home

Jump to last item. End

Scroll the Watch window left one character. LeftArrow

Scroll the Watch window right one character. RightArrow
Using SoftICE 89

Navigating Through SoftICE
Setting an Expression to Watch

Use the WATCH command to set an expression to watch. The expression can use global and
local symbols, registers, and addresses.

Note: To set a watch on a local variable, the variable must be in scope.

The following examples illustrate how to use the WATCH command.

Example: Monitors the value of ds:esi:
WATCH ds:esi

Example: Monitors the value ds:esi points to:
WATCH *ds:esi

Deleting a Watch

You can use either the mouse or keyboard to delete a watch. To use your mouse to delete a
watch, click on the watch and press Delete. To use your keyboard to delete a watch, use Alt-W
to enter the Watch window, use the arrow keys to select the watch, and press Delete.

Viewing Information

The Watch window contains the following fields in the order shown.

Expanding and Collapsing Typed Expressions

You can expand typed expressions to display their contents. Typed expressions are delineated
with a plus sign (+) to indicate that you can expand them. To expand or collapse a typed
expression, do the following:

• Pentium PCs only—Double-click the item.

• All PCs—Use Alt-W to enter the Watch window, scroll to the item, then press Enter.

Watch Line Field Description

Expression Actual expression that was typed on the WATCH command. This expression
is re-evaluated every time the Watch window displays.

Type definition Type definition of the expression.

Value Current value of the expression being watched.
90 Using SoftICE

Using the Register Window
Associated Commands

The following command is associated with the Watch window. Refer to the SoftICE
Command Reference for more information about using this command.

Using the Register Window

The Register window displays the current value of the system registers, flags, and the effective
address if applicable. Use this window to determine which registers are altered by a procedure
call or to edit the registers and flags.

Controlling the Register window

Use the following commands to control the Register window.

If you are not using the Register window, close it to free up screen space for other windows.

Viewing Information

The first three lines in the Register window show the following registers, flags, and address if
available:

EAX, EBX, ECX, EDX, ESI
EDI, EBP, ESP, EIP, o d i s z a p c
CS, DS, SS, ES, FS, GS effective address=value

When you use the T (trace), P (step over), and G (go to) commands, SoftICE highlights the
registers that change. This feature is useful for seeing which registers were altered by a
procedure call.

Command Function

WATCH expression Adds a watch expression.

Command Action

WR Opens and closes the Register window.

Alt-R Moves the cursor into or out of the Register window.
Using SoftICE 91

Navigating Through SoftICE
In the second line of the Register window, the CPU flags are defined as follows.

Note: A lowercase letter that is not highlighted indicates a flag value of 0. A highlighted
uppercase letter indicates a flag value of 1, for example, o d I s Z a p c.

If the current instruction references a memory location, the effective address and the value at
the effective address display in the third line of the Register window. You can use the effective
address and value in expressions with the Eaddr and Evalue functions; refer to Built-in
Functions on page 132.

Editing Registers and Flags

You can use the Register window to edit the registers and flags. Move the cursor into the
Register window, then edit the registers and flags in place. To move the mouse into the
Register window, either click the mouse in the Register window or press Alt-R. The following
keys are available for editing within the Register window.

Flag Description Flag Description

o Overflow flag z Zero flag

d Direction flag a Auxiliary carry flag

i Interrupt flag p Parity flag

s Sign flag c Carry flag

Editing Function Active Keys

Position cursor at the beginning of the next register field. Tab or
Shift-RightArrow

Position cursor at the beginning of the previous register field. Shift-Tab or
Shift-LeftArrow

Accept changes and exit edit register mode. Enter

Exit edit register mode. The register that the cursor is currently on will not
change, but other previously-modified registers change.

Esc

Toggle the value of a flag when the cursor is positioned in the flags field. Insert

Move the cursor left, right, up, and down in the Register window. Arrow keys
92 Using SoftICE

Using the Data Window
Associated Commands

The following commands are associated with the Register window. Refer to the SoftICE
Command Reference for more information about using these commands.

Using the Data Window

The Data window lets you view and edit the contents of memory. You can use up to four
different Data windows to view different memory locations in a specified format. However,
you can view only one Data window at a time.

Controlling the Data Window

Use the following commands to control the Data window.

Cycling Through Data Windows

To cycle through the Data windows, either enter the DATA command or click the line at the
top of the Data window. The Data windows cycle in order from 0 to 3.

Command Function

CPU Displays CPU register information.

G [=start-address] [break-address] Goes to an address.

P Executes one program step.

T [=start-address] [count] Traces one instruction.

Command Action

WD Opens and closes the Data window.

WD [num-lines] Resizes the Data window.

Alt-D Moves the cursor into or out of the Data window.

DATA Cycles through Data windows.

D [address] Select an address to view in the current Data window.

FORMAT (Shift-F3) Selects a format to display in the current Data window.
Using SoftICE 93

Navigating Through SoftICE
Scrolling the Data Window

To scroll the Data window, either click the scroll arrows or press Alt-D to move the cursor
into the Data window and use the following keys.

Viewing Information

The line above the Data window displays the following four fields in the order shown.

Each line in a Data window shows 16 bytes of data in the current format of either byte, word,
dword, short real, long real, or 10-byte real. If the current format is 10-byte real, each line
shows 20 bytes of data. The data bytes also display in ASCII on the right side of the window if
the current format is hexadecimal (byte, word, or dword).

Function Key Sequence

Scroll the window to the previous page. PageUp

Scroll the window to the next page. PageDown

Scroll the window to the previous line. UpArrow

Scroll the window to the next line. DownArrow

Field Description

A String If the window was assigned an expression with the DEX command, the ASCII
expression displays on this line. Otherwise, the nearest symbol preceding the
data location displays. This can be one of the following strings:

• Symbol name followed by the hexadecimal offset from the symbol name, for
example, MySYMBOL+00010

• Windows module name followed by a type, if the data segment is part of the
Windows heap, for example, mouse.moduleDB

• Owner name of the data segment if it is part of a virtual DOS machine.

• Windows module name, section name, and hexadecimal offset from the
name, for example, KERNEL32!.text+001F

• If the location does not have an associated symbol, this field is blank.

Data format type Displays either byte, word, dword, short real, long real, or 10-byte real.

Segment type Either V86 or PROT displays. V86 indicates data from a real-mode segment:offset
address and PROT indicates data from a protected-mode selector:offset address.

Window number Data window number from 0 to 3. Only one Data window displays at a time.
94 Using SoftICE

Using the Data Window
Changing the Memory Address and Format

Either click on the format name listed in the top line of the Data window or use the
FORMAT command (Shift-F3) to change the format of the current Data window. The
format cycles among the following: byte, word, dword, short real, long real, and 10-byte real.

To change the memory address displayed in the current Data window, enter the D command
and specify an address. The following example displays the memory starting at address
ES:1000h:

: D es:1000

Hint: You can also use the D command to specify the format for the address you display.
Refer to the SoftICE Command Reference for more information about the D command.

Editing Memory

To edit memory, move the cursor into the Data window and use either hexadecimal or ASCII
characters. Use the following keys for editing within the Data window.

Hint: You can also use the E command to edit data.

Assigning Expressions

Use the DEX command to assign an expression to any of the Data windows. When SoftICE
pops up, the expressions are evaluated and the resulting locations display in their assigned
Data windows. This is useful for setting up a window that always displays the contents of the
stack. For example, the following command displays the current contents of the stack in Data
window 0, each time SoftICE pops up:

DEX 0 SS:ESP

Editing Function Active Keys

Toggle between numeric and ASCII areas. Tab

Position cursor at the beginning of the previous data field (previous byte, word,
or dword in hexadecimal mode, or previous character in ASCII mode).

Shift-Tab

Accept changes and exit edit data mode. Enter

Exit edit data mode. The data field the cursor is currently on will not change, but
other previously-modified data fields change.

Esc
Using SoftICE 95

Navigating Through SoftICE
Associated Commands

The following commands are associated with the Data window. Refer to the SoftICE
Command Reference for more information about using these commands.

Using the FPU Stack Window

The FPU Stack window displays the current state of the floating point unit (FPU) stack and
MMX registers.

Use the WF command to open or close the FPU Stack window.

Viewing Information

If the values of the FPU registers display as a question mark (?), the FPU is disabled or not
present. Windows NT enables the FPU for a thread after it executes one FPU-related
instruction.

The Intel architecture aliases the 64-bit MMX registers upon the FPU stack. To display
registers in the FPU Stack window, select one of the following data formats.

When they are viewed as floating points, the registers are labeled ST0 through ST7. When
they are viewed packed, as byte/word/dword, the registers are labelled MM0 through MM7.
(See the SoftICE Command Reference for more information about the WF command.)

Hint: Use the WF -D command to display the contents of the registers, the status, and the
control words in the Command window.

Command Function

D [size] [address] Displays memory.

DEX [data-window-number [expression]] Displays or assigns an expression to the Data window.

E [size] [address [data-list]] Edits memory.

S [-cu] [address L length data list] Searches memory for data.

Data Format Description Use

WF F Floating point Floating point only

WF B Byte packed

MMX onlyWF W Word packed

WF D Dword packed

MMX refers to the
multimedia
extensions to the
Intel Pentium and
Pentium-Pro
processors.
96 Using SoftICE

Mistakes are a fact of life. It is the response to error that counts.

à Nikki Giovanni
6 Using SoftICE

Debugging Multiple Programs at Once 99

Trapping Faults 99

Ring 3 32-bit protected mode (Win32 programs) 99

Ring 0 driver code (Kernel-mode device drivers) 100

Ring 3 16-bit protected mode (16-bit Windows programs) 100

About Address Contexts 101

Using INT 0x41 .DOT Commands 102

Understanding Transitions From Ring-3 to Ring-0 103
Using SoftICE 97

Using SoftICE
98 Using SoftICE

Debugging Multiple Programs at Once
Debugging Multiple Programs at Once

Symbol Loader lets you load several symbol tables at the same time. Thus, you can debug
complex sets of system software that may contain several different components, including
applications, DLLS, and drivers.

Use the TABLE command to view a list of all the symbol tables currently loaded and to select
a different symbol table. When you reach a breakpoint in a program that has a corresponding
symbol table, enter the TABLE command followed by the first few characters of the symbol
table name to change the current symbol table to the one that matches your program.

If you are not sure which table is the current table, enter the TABLE command with no
parameters to list all the loaded tables. The current table is highlighted.

You can also switch tables to a symbol table that does not match the code you are currently
executing. This is useful for setting a breakpoint in a program other than the one you are
currently executing.

Trapping Faults

SoftICE provides fault trapping support for the following types of code:

• Ring 3 32-bit protected mode (Win32 programs)

• Ring 0 driver code (kernel-mode device drivers)

• Ring 3 16-bit protected mode (16-bit Windows programs)

SoftICE does not provide fault trapping for DOS boxes. This includes both straight V86
programs and DOS extender applications.

The following sections describe fault trapping support.

Ring 3 32-bit protected mode (Win32 programs)

SoftICE traps all unhandled exceptions that normally cause an error dialog box. SoftICE
automatically restarts the instruction that caused the fault, pops up the SoftICE window, and
displays the instruction and a message similar to the following:

Break due to Unhandled Exception NTSTATUS=STATUS_ACCESS_VIOLATION

The NTSTATUS field contains the appropriate error message corresponding to the status
code. (Refer to the include file NTSTATUS.H in the Windows NT DDK for a complete list
of status codes.)
Using SoftICE 99

Using SoftICE
If execution continues after SoftICE traps the fault, SoftICE ignores the fault and lets the
system do its normal exception processing. For example, it could present an application failure
dialog box.

Ring 0 driver code (Kernel-mode device drivers)

SoftICE handles all ring 0 exceptions that result in a call to KeBugCheckEX. KeBugCheckEX
is the routine that displays the "blue screen" in Windows NT.

If the KeBugCheckEX bug code is the result of a page fault, GP fault, stack fault, or invalid
opcode, SoftICE attempts to restart the faulting instruction. Control stops on the actual
faulting instruction with all the registers in their original state. If the code continues to fault
on the same instruction, either reboot or attempt to skip the fault by altering the EIP or fixing
the fault condition.

If the KeBugCheckEx bug code is not the result of a page fault, GP fault, stack fault, or
invalid opcode, the instruction cannot be restarted. SoftICE pops up and displays the first
instruction in KeBugCheckEX and a message similar to the following:

Break Due to KeBugCheckEx (Unhandled kernel mode exception) Error=1E
(KMODE_EXCEPTION_NOT_HANDLED) P1=8000003 P2=804042B1 P3=0
P4=FFFFFFFF

The error field is the hexadecimal bug code followed by a description of the error. Bug code
definitions are contained in the NT DDK in the include file bugcodes.h.

The P1 through P4 fields are the parameters passed to the KeBugCheckEX routine. These
fields do not have a standard defined meaning.

If you attempt to continue from this point, Windows NT displays a blue screen and then
hangs. If you want to gain control after the blue screen, turn on I3HERE (SET I3HERE
ON); Windows NT executes an INT 3 instruction after it displays the blue screen.

Ring 3 16-bit protected mode (16-bit Windows programs)

SoftICE handles 16-bit fault trapping somewhat differently than 32-bit fault trapping. When
a 16-bit fault occurs, Windows NT eventually displays a dialog box that describes the fault
and gives you the choice of CANCEL or CLOSE.

If you click CANCEL, the faulting instruction is restarted and Windows NT issues a
debugger notification for trapping the faulting instruction. SoftICE uses this debugger hook
to pop up and display the faulting instruction. In other words, SoftICE pops up after you
receive the crash dialog box and select CANCEL, not before.

If you click CLOSE, Windows NT does not restart the instruction and SoftICE does not pop
up. Thus, if you want to debug the fault, make sure you click CANCEL.
100 Using SoftICE

About Address Contexts
Some faults in Windows NT display more than one dialog box. If this happens, the first
dialog box provides a choice of CLOSE or IGNORE. Choose IGNORE to instruct Windows
NT to skip the faulting instruction and to continue to execute the program. Choose CLOSE
to instruct Windows NT to display the second dialog box, as previously described.

About Address Contexts

Windows 95 and Windows NT give each process it own address space from 0 GB to 2GB.
Additionally, Windows 95 reserves the first 4 MB for each virtual machine (where DOS and
its drivers reside). Memory from 2GB to 4GB is shared between all processes.

The process-specific virtual address space is known as the _address context_ (or _process_).
SoftICE displays the name of the current process on the far right side of the status bar at the
bottom of the screen. Be aware that the current context is not always your application’s
context, particularly if you hotkey into SoftICE. If you are not in the context of your
application, use the ADDR command to switch to your application before examining or
modifying your application’s data or setting breakpoints in your application’s code.

SoftICE automatically switches address contexts for your convenience under the following
circumstances:

• If you use the TABLE command to switch to a 32-bit table, SoftICE sets the current
address context to the address context for that module.

• If you use the FILE command to display a source file from a 32-bit table, SoftICE sets
the current address context to the address context for that module.

• If you use a symbol name in an expression, SoftICE changes the address context to the
appropriate context. This includes export symbols loaded through Symbol Loader.

When you change address contexts, confusion might arise if you are viewing code or data
located in the application’s private address space (a linear address between 0x400000 to
0x7FFFFFFF for Windows 95 and 0 to 0x7FFFFFFF for Windows NT). This occurs because
the data or code that is displayed changes even though the selector:offset address do not. This
is normal. The linear addresses remain the same, but the underlying system page tables now
reflect the physical memory for the specified address context.

SoftICE does not allow you to specify an address context as part of an expression. If you are
using bare addresses in an expression, be sure that the current address context is set
appropriately. For example, D 137:401000 displays memory at 401000 in the current address
context.

Warning: Before you use bare addresses to set breakpoints, be sure you are in the correct
address context. SoftICE uses the current context to translate addresses.
Using SoftICE 101

Using SoftICE
Using INT 0x41 .DOT Commands

Under Windows 95, Microsoft provides a set of extensions that allow a VxD or 32-bit DLL to
communicate with a kernel-level debugger. (See the DEBUGSYS.INC file distributed with
the Windows 95 DDK.) The .DOT API allows a VxD to provide VxD-specific debug
information or command extensions interactively through the standard user interface of the
kernel-level debugger. Although the API was originally designed for Microsoft’s WDEB386,
SoftICE supports a rich subset of the .DOT API. Thus, you can use SoftICE to access VMM
and VxD .DOT commands, as well as any .DOT commands you might implement for your
own VxD.

Warning: The debug functionality for all .DOT extensions is built into VMM or another
VxD. It is not part of SoftICE. Thus, SoftICE cannot guarantee that these
extensions work correctly. Also, .DOT extensions might not perform error
checking, which can lead to a system crash if invalid input is entered. Finally,
SoftICE cannot determine whether or not a .DOT extension requires the system to
be in a specific state. Thus, using the .DOT extension at an inappropriate time
might result in a system crash.

SoftICE supports the following .DOT commands in Windows 95:

• Registered .DOT extensions

To get a list of registered dot commands, use the following command:

.?

• Debug_Query .DOT extensions

To invoke these .DOT handlers, type the VxD name after the dot. Most of these
commands, if implemented, display menus. For example, the following VxDs have
.DOT handlers in both the retail and debug versions of Windows 95:

à .VMM
à .VPICD
à .VXDLDR

To determine if a VxD has a .DOT handler, try it. The .DOT handlers in the debug
version of the DDK sometimes provide more functionality than the .DOT handlers in
the retail version.
102 Using SoftICE

Understanding Transitions From Ring-3 to Ring-0
• VMM-embedded .DOT extensions

VMM provides a variety of .DOT extensions that are available in both the debug and
retail versions. To get a list of .DOT extensions supported by VMM, use the following
command:

..?

In the Windows 95 retail build, the ..? command yields the following .DOT extensions.

Understanding Transitions From Ring-3 to Ring-0

Many times when tracing into code, under Windows 95, you arrive at either an INT 0x30 or
an ARPL. Both are methods for making a transition from Ring-3 to Ring-0. When you wish
to follow the ring transition, you can save yourself the time and effort of stepping through a
large amount of VMM code by using the G(o) command to execute up to the address shown
in the disassembly.

Windows 95 uses the following methods to transition Ring-3 code to Ring-0 code:

• For V86 code, Windows 95 uses the ARPL instruction, which causes an invalid opcode
fault. The invalid opcode handler then passes control to the appropriate VxD. The ARPL
instruction is usually in ROM. Windows 95 uses only one ARPL and it varies the V86
segment:offset to indicate different VxD addresses. For example, if the ARPL is at
FFFF:0, Windows 95 uses the addresses FFFF:0, FFFE:10, FFFD:20, FFFC:30 and so
on.

The following example shows sample output for disassembling an ARPL:

.DOT Extension Description

.R[#] Displays the registers of the current thread.

.VM[#] Displays the complete VM status.

.VC[#] Displays the current VMs control block.

.VH[#] Displays a VMM linked list, given list handle.

.VR[#] Displays the registers of the current VM.

.VS[#] Displays the current VMs virtual mode stack.

.VL Displays a list of all VM handles.

.DS Dumps protected mode stack with labels.

.VMM Menu VMM state information.

.<dev-name> Display device-specific information.

FDD2:220D ARPL DI,BP ; #0028:C0078CC9 IFSMgr(01)+0511
Using SoftICE 103

Using SoftICE
• For PM code, Windows 95 uses interrupt 0x30h. Segment 0x3B contains nothing but
interrupt 0x30 instructions, each of which transfers control to a VxD.

The following example shows sample output for disassembling segment:offset 3B:31A:

003B:031A INT30 ; #0028:C008D4F4 VPICD(01)+0A98

003B:031C INT30 ; #0028:C007F120 IOS(01)+0648

003B:031E INT30 ; #0028:C02C37FC VMOUSE(03))00F0

003B:0320 INT30 ; #0028:C02C37FC VMOUSE(03))00F0

003B:0322 INT30 ; #0028:C023B022 BIOSXLAT(05)=0022

003B:0324 INT30 ; #0028:C230F98 BIOSXLAT(04)=0008

003B:0326 INT30 ; #0028:C023127C BIOSXLAT(04)=02EC
104 Using SoftICE

You know my methods. Apply them.

à Sir Arthur Conan Doyle
7 Using Breakpoints

Introduction 107

Types of Breakpoints Supported by SoftICE 107

Breakpoint Options 108

Execution Breakpoints 108

Memory Breakpoints 109

Interrupt Breakpoints 110

I/O Breakpoints 111

Window Message Breakpoints 112

Understanding Breakpoint Contexts 113

Virtual Breakpoints 113

Setting a Breakpoint Action 114

Conditional Breakpoints 114

Conditional Breakpoint Count Functions 116

Using Local Variables in Conditional Expressions 119

Referencing the Stack in Conditional Breakpoints 120

Performance 122

Duplicate Breakpoints 122

Elapsed Time 122

Breakpoint Statistics 123

Referring to Breakpoints in Expressions 123

Manipulating Breakpoints 124

Using Embedded Breakpoints 124
Using SoftICE 105

Using Breakpoints
106 Using SoftICE

Introduction
Introduction

You can use SoftICE to set breakpoints on program execution, memory location reads and
writes, interrupts, and reads and writes to I/O ports. SoftICE assigns a breakpoint index, from
0 to FF, to each breakpoint. You can use this breakpoint index to identify breakpoints when
you set, delete, disable, enable, or edit them.

All SoftICE breakpoints are sticky, which means that SoftICE tracks and maintains a
breakpoint until you intentionally clear or disable it using the BC or the BD command. After
you clear breakpoints, you can recall them with the BH command, which displays a
breakpoint history.

You can set up to 256 breakpoints at one time in SoftICE. However, the number of
breakpoints you can set on memory location (BPMs) and I/O ports (BPIOs) is a total of four,
due to restrictions of the x86 processors.

Where symbol information is available, you can set breakpoints using function names. When
in source or mixed mode, you can set point-and-shoot style breakpoints on any source code
line. A valuable feature is that you can set point-and-shoot breakpoints in a module before it is
even loaded.

Types of Breakpoints Supported by SoftICE

SoftICE provides a powerful array of breakpoint capabilities that take full advantage of the
x86 architecture, as follows:

• Execution Breakpoints: SoftICE replaces an existing instruction with INT 3. You can use
the BPX command to set execution breakpoints.

• Memory Breakpoints: SoftICE uses the x86 debug registers to break when a certain
byte/word/dword of memory is read, written, or executed. You can use the BPM
command to set memory breakpoints.

• Interrupt Breakpoints: SoftICE intercepts interrupts by modifying the IDT (Interrupt
Descriptor Table) vectors. You can use the BPINT command to set interrupt
breakpoints.

• I/O Breakpoints: SoftICE uses a debug register extension available on Pentium and
Pentium-Pro CPUs to watch for an IN or OUT instruction going to a particular port
address. You can use the BPIO command to set I/O breakpoints.

• Window Message Breakpoints: SoftICE traps when a particular message or range of
messages arrives at a window. This is not a fundamental breakpoint type; it is just a
convenient feature built on top of the other breakpoint primitives. You can use the
BMSG command to set window message breakpoints.
Using SoftICE 107

Using Breakpoints
Breakpoint Options

You can qualify each type of breakpoint with the following two options:

• A conditional expression [IF expression]: The expression must evaluate to non-zero
(TRUE) for the breakpoint to trigger. Refer to Conditional Breakpoints on page 114.

• A breakpoint action [DO “ command1;command2;…”]: A series of SoftICE commands
can automatically execute when the breakpoint triggers. You can use this feature in
concert with user-defined macros to automate tasks that would otherwise be tedious.
Refer to Setting a Breakpoint Action on page 114.

Note: For complete information on each breakpoint command, refer to the SoftICE
Command Reference.

Execution Breakpoints

An execution breakpoint traps executing code such as a function call or language statement.
This is the most frequently used type of breakpoint. By replacing an existing instruction with
an INT 3 instruction, SoftICE takes control when execution reaches the INT 3 breakpoint.

SoftICE provides two ways for setting execution breakpoints: using a mouse and using the
BPX command. The following sections describe how to use these methods for setting
breakpoints.

Using a Mouse to Set Breakpoints

If you are using a Pentium processor and a mouse, you can use the mouse to set or clear point-
and-shoot (sticky) and one-shot breakpoints. To set a sticky breakpoint, double-click the line
on which you want to set the breakpoint. SoftICE highlights the line to indicate that you set a
breakpoint. Double-click the line again to clear the breakpoint. To set a one-shot breakpoint,
click the line on which you want to set the breakpoint and use the HERE command (F7) to
execute to that line.

Using the BPX Command to Set Breakpoints

Use the BPX command with any of the following parameters to set an execution breakpoint:

BPX [address] [IF expression] [DO “ command1;command2;…”]

Example: To set a breakpoint on your application’s WinMain function, use this command:
BPX WinMain

IF expression Refer to Conditional Breakpoints on page 114.

DO “command1;command2;…” Refer to Setting a Breakpoint Action on page 114.
108 Using SoftICE

Types of Breakpoints Supported by SoftICE
Use the BPX command without specifying any parameter to set a point-and-shoot execution
breakpoint in the source code. Use Alt-C to move the cursor into the Code window. Then use
the arrow keys to position the cursor on the line on which you want to set the breakpoint.
Finally, use the BPX command (F9). If you prefer to use your mouse to set the breakpoint,
click the scroll arrows to scroll the Code window, then double-click the line on which you
want to set the breakpoint.

Memory Breakpoints

A memory breakpoint uses the debug registers found on the 386 CPUs and later models to
monitor access to a certain memory location. This type of breakpoint is extremely useful for
finding out when and where a program variable is modified, and for setting an execution
breakpoint in read-only memory. You can only set four memory breakpoints at one time,
because the CPU contains only four debug registers.

Use the BPM command to set memory breakpoints:

BPM[B|W|D] address [R|W|RW|X] [debug register] [IF expression]
[DO “command1;command2;…”]

Example: The following example sets a memory breakpoint to trigger when a value of 5 is
written to the Dword (4-byte) variable MyGlobalVariable.

BPMD MyGlobalVariable W IF MyGlobalVariable==5

If the target location of a BPM breakpoint is frequently accessed, performance can
be degraded regardless of whether the conditional expression evaluates to FALSE.

BPM and BPMB Set a byte-size breakpoint.

BPMW Sets a word (2-byte) size breakpoint.

BPMD Sets a dword (4-byte) size breakpoint.

R, W, and RW Break on reads, writes, or both.

X Breaks on execution; this is more powerful than a BPX-style
breakpoint because memory does not need to be modified,
enabling such options as setting breakpoints in ROM or setting
breakpoints on addresses that are not present.

debug register Specifies which debug register to use. SoftICE normally manages
the debug register for you, unless you need to specify it in an
unusual situation.

IF expression Refer to Conditional Breakpoints on page 114.

DO “command1;command2;…” Refer to Setting a Breakpoint Action on page 114.
Using SoftICE 109

Using Breakpoints
Interrupt Breakpoints

Use an interrupt breakpoint to trap an interrupt through the IDT. The breakpoint only
triggers when a specified interrupt is dispatched through the IDT.

Use the BPINT command to set interrupt breakpoints:

BPINT interrupt-number [IF expression] [DO “command1;command2;…”]

If an interrupt is caused by a software INT instruction, the instruction displayed will be the
INT instruction. (SoftICE pops up when execution reaches the INT instruction responsible
for the breakpoint, but before the instruction actually executes.) Otherwise, the current
instruction will be the first instruction of an interrupt handler. You can list all interrupts and
their handlers by using the IDT command.

Example: Use the following command to set a breakpoint to trigger when a call to the kernel-
mode routine NtCreateProcess is made from user mode:

BPINT 2E IF EAX==1E

Note: The NtCreateProcess is normally called from ZwCreateProcess in the
NTDLL.DLL, which is in turn called from CreateProcessW in the
KERNEL32.DLL. In the conditional expression, 1E is the service number for
NtCreateProcess. Use the NTCALL command to find this value.

You can use the BPINT command to trap software interrupts, for example, INT 21 made by
16-bit Windows programs. Note that software interrupts issued from V86 mode do not pass
through the IDT vector that they specify. INT instructions executed in V86 generate
processor general protection faults (GPF), which are handled by vector 0xD in the IDT. The
Windows GPF handler realizes the cause of the fault and passes control to a handler dedicated
to specific V86 interrupt types. The types may end up reflecting the interrupt down to V86
mode by calling the interrupt handler entered in the V86 mode Interrupt Vector Table (IVT).
In some cases, a real-mode interrupt is reflected (simulated) by calling the real-mode interrupt
vector.

In the case where the interrupt is reflected, you can trap it by placing a BPX breakpoint at the
beginning of the real-mode interrupt handler.

Example: To set a breakpoint on the real-mode INT 21 handler, use the following command:

BPX *($0:(21*4))

interrupt-number Number ranging from 0 to 255 (0 to FF hex).

IF expression Refer to Conditional Breakpoints on page 114.

DO “command1;command2;…” Refer to Setting a Breakpoint Action on page 114.
110 Using SoftICE

Types of Breakpoints Supported by SoftICE
I/O Breakpoints

An I/O breakpoint monitors reads and writes to a port address. The breakpoint traps when an
IN or OUT instruction accesses the port. SoftICE implements I/O breakpoints by using the
debug register extensions introduced with the Pentium. As a result, I/O breakpoints require a
Pentium or Pentium-Pro CPU. A maximum of four I/O breakpoints can be set at one time.
The I/O breakpoint is effective in kernel-level (ring 0) code as well as user (ring 3) code.

Notes: Under Windows 95, SoftICE relies on the I/O permission bitmap, which restricts I/O
trapping to ring 3 code.

You cannot use I/O breakpoints to trap IN/OUT instructions executed by MS-DOS
programs. The IN/OUT instructions are trapped and emulated by the operating
system, and therefore do not generate real port I/O, at least not in a 1:1 mapping.

Use the BPIO command to set I/O breakpoints:

BPIO port-number [R|W|RW] [IF expression]
[DO “ command1;command2;…”]

When an I/O breakpoint triggers and SoftICE pops up, the current instruction is the
instruction following the IN or OUT that caused the breakpoint to trigger. Unlike BPM
breakpoints, there is no size specification; any access to the port-number, whether byte, word,
or dword, triggers the breakpoint. Any I/O that spans the I/O breakpoint will also trigger the
breakpoint. For example, if you set an I/O breakpoint on port 2FF, a word I/O to port 2FE
would trigger the breakpoint.

Example: Use the following command to set a breakpoint to trigger when a value is read from
port 3FEH with the upper 2 bits set:

BPIO 3FE R IF (AL & C0)==C0

The condition is evaluated after the instruction completes. The value will be in AL,
AX, or EAX because all port I/O, except for the string I/O instructions (which are
rarely used), use the EAX register.

R, W, and RW Break on reads (IN instructions), writes (OUT instructions), or both,
respectively.

IF expression Refer to Conditional Breakpoints on page 114.

DO “command1;command2;…” Refer to Setting a Breakpoint Action on page 114.
Using SoftICE 111

Using Breakpoints
Window Message Breakpoints

Use a window message breakpoint to trap a certain message or range of messages delivered to
a window procedure. Although you could implement an equivalent breakpoint yourself using
BPX with a conditional expression, the following BMSG command is easier to use:

BMSG window-handle [L] [begin-message [end-message]]
[IF expression] [DO “command1;command2;…”]

When specifying a message or a message range, you can use the symbolic name, for example,
WM_NCPAINT. Use the WMSG command to get a list of the window messages that
SoftICE understands. If no message or message range is specified, any message will trigger the
breakpoint.

Example: To set a window message breakpoint for the window handle 1001E, use the
following command:

BMSG 1001E WM_NCPAINT

SoftICE is smart enough to take into account the address context of the process
that owns the window, so it does not matter what address context you are in when
you use BMSG.

You can construct an equivalent BPX-style breakpoint using a conditional
expression. Use the HWND command to get the address of the window procedure,
then use the following BPX command (Win32 only):

BPX 5FEBDD12 IF (esp->8)==WM_NCPAINT

Warning: When setting a breakpoint using a raw address (not a symbol), it is vital to be in
the correct address context.

window-handle Value returned when the window was created; you can use the
HWND command to get a list of windows with their handles.

L Signifies that the window message should be printed to the
Command window without popping into SoftICE.

begin-message Single Windows message or the lower message number in a
range of Windows messages. If you do not specify a range with
an end-message, then only the begin-message will cause a break.

For both begin-message and end-message, the message numbers
can be specified either in hexadecimal or by using the actual
ASCII names of the messages, for example, WM_QUIT.

end-message Higher message number in a range of Windows messages.

IF expression Refer to Conditional Breakpoints on page 114.

DO “command1;command2;…” Refer to Setting a Breakpoint Action on page 114.
112 Using SoftICE

Understanding Breakpoint Contexts
Understanding Breakpoint Contexts

A breakpoint context consists of the address context in which the breakpoint was set and in
what code module the breakpoint is in, if any. Breakpoint contexts apply to the BPX and
BPM commands, and breakpoint types based on those commands such as BMSG.

For Win32 applications, breakpoints set in the upper 2GB of address space are global; they
break in any context. Breakpoints set in the lower 2GB are context-sensitive; they trigger
according to the following criteria and SoftICE pops up:

• SoftICE only pops up if the address context matches the context in which the breakpoint
was set.

• If the breakpoint triggers in the same code module in which the breakpoint was set, then
SoftICE disregards the address context and pops up. This means that a breakpoint set in
a shared module like KERNEL32.DLL breaks in every address context that has the
module loaded, regardless of what address context was selected when the breakpoint was
set.

The exception is if another process mapped the module at a different base address than
the one in which the breakpoint is set. In this case, the breakpoint does not trigger. Avoid
this situation by basing your DLLs at non-conflicting addresses.

Breakpoints set on MS-DOS and 16-bit Windows programs are context-sensitive too in the
sense that the breakpoint only affects the NTVDM process in which the breakpoint was set.
The breakpoint never crosses NTVDMs, even if the same program is run multiple times.

Breakpoint contexts are more important for BPM-type breakpoints than for BPX. BPM sets
an x86 hardware breakpoint that triggers on a certain virtual address. Because the CPU’s
breakpoint hardware knows nothing of address spaces, it could potentially trigger on an
unrelated piece of code or data. Breakpoint contexts give SoftICE the ability to discriminate
between false traps and real ones.

Virtual Breakpoints

In SoftICE, you can set breakpoints in Windows modules before they load, and it is not
necessary for a page to be present in physical memory for a BPX (INT 3) breakpoint to be set.
In such cases, the breakpoint is virtual; it will be automatically armed when the module loads
or the page becomes present. Virtual breakpoints can only be set on either symbols or source
lines.
Using SoftICE 113

Using Breakpoints
Setting a Breakpoint Action

You can set a breakpoint to execute a series of SoftICE commands, including user-defined
macros, after the breakpoint is triggered. You define these breakpoint actions with the DO
option, which is available with every breakpoint type:

DO “ command1;command2;…”

The body of a breakpoint action definition is a sequence of SoftICE commands or other
macros, separated by semicolons. You need not terminate the final command with a
semicolon.

Breakpoint actions are closely related to macros. Refer to Working with Persistent Macros on
page 162 for more information about macros. Breakpoint actions are essentially unnamed
macros that do not accept command-line arguments. Breakpoint actions, like macros, can call
upon macros. In fact a prime use of macros is to simplify the creation of complex breakpoint
actions.

If you need to embed a literal quote character (") or a percent sign (%) within the macro
(breakpoint) body, precede the character with a backslash character (\). To specify a literal
backslash character, use two consecutive backslashes (\\).

If a breakpoint is being logged (refer to the built-in function BPLOG on page 118), the action
will not be executed.

The following examples illustrate the basic use of breakpoint actions:

BPX EIP DO “dd eax”

BPX EIP DO “data 1;dd eax”

BPMB dataaddr if (byte(*dataaddr)==1) do “? IRQL”

Conditional Breakpoints

Conditional breakpoints provide a fast and easy way to isolate a specific condition or state
within the system or application you are debugging. By setting a breakpoint on an instruction
or memory address and supplying a conditional expression, SoftICE will only trigger if the
breakpoint evaluates to non-zero (TRUE). Because the SoftICE expression evaluator handles
complex expressions easily, conditional expressions take you right to the problem or situation
you want to debug with ease.

All SoftICE breakpoint commands (BPX, BPM, BPIO, BMSG, and BPINT) accept
conditional expressions using the following syntax:

breakpoint-command [breakpoint options] [IF conditional expression]
[DO “ commands”]
114 Using SoftICE

Conditional Breakpoints
The IF keyword, when present, is followed by any expression that you want to be evaluated
when the breakpoint is triggered. The breakpoint will be ignored if the conditional expression
is FALSE (zero). When the conditional expression is TRUE (non-zero), SoftICE pop ups and
displays the reason for the break, which includes the conditional expression.

The following examples show conditional expressions used during the development of
SoftICE.

Note: Most of these examples contain system-specific values that vary depending on the exact
version of Windows NT you are running.

• Watch a thread being activated:

bpx ntoskrnl!SwapContext IF (edi==0xFF8B4020)

• Watch a thread being deactivated:

bpx ntoskrnl!SwapContext IF (esi==0xFF8B4020)

• Watch CSRSS HWND objects (type 1) being created:

bpx winsrv!HMAllocObject IF (esp->c == 1)

• Watch CSRSS thread info objects (type 6) being destroyed:

bpx winsrv!HMFreeObject+0x25 IF (byte(esi->8) == 6)

• Watch process object-handle-tables being created:

bpx ntoskrnl!ExAllocatePoolWithTag IF (esp->c == ‘Obtb’)

• Watch a thread state become terminated (enum == 4):

bpmb _thread->29 IF byte(_thread->29) == 4)

• Watch a heap block (230CD8) get freed:

bpx ntddl!RtlFreeHeap IF (esp->c == 230CD8)

• Watch a specific process make a system call:

bpint 2E if (process == _process)

Many of the previous examples use the thread and process intrinsic functions provided by
SoftICE. These functions refer to the active thread or process in the operating system. In some
cases, the examples precede the function name with an underscore “_”. This is a special
feature that makes it easier to refer to a dynamic value such as a register’s contents or the
currently running thread or process as a constant. The following examples should help to
clarify this concept:

• This example sets a conditional breakpoint that will be triggered if the dynamic (run-
time) value of the EAX register equals its current value.

bpx eip IF (eax == _eax)

This is equivalent to:

? EAX

00010022

bpx eip IF (eax == 10022)
Using SoftICE 115

Using Breakpoints
• This example sets a conditional breakpoint that will be triggered if the value of an
executing thread’s thread-id matches the thread-id of the currently executing thread.

bpx eip IF (tid == _tid)

This is equivalent to:

? tid

8

bpx eip IF (tid == 8)

When you precede a function name or register with an underscore in an expression, the
function is evaluated immediately and remains constant throughout the use of that
expression.

Conditional Breakpoint Count Functions

SoftICE supports the ability to monitor and control breakpoints based on the number of
times a particular breakpoint has or has not been triggered. You can use the following count
functions in conditional expressions:

• BPCOUNT

• BPMISS

• BPTOTAL

• BPLOG

• BPINDEX

BPCOUNT

The value for the BPCOUNT function is the current number of times that the breakpoint
has been evaluated as TRUE.

Use this function to control the point at which a triggered breakpoint causes a popup to
occur. Each time the breakpoint is triggered, the conditional expression associated with the
breakpoint is evaluated. If the condition evaluates to TRUE, the breakpoint instance count
(BPCOUNT) increments by one. If the conditional evaluates to FALSE, the breakpoint miss
instance count (BPMISS) increments by one.

Example: The fifth time the breakpoint triggers, the BPCOUNT equals 5, so the conditional
expression evaluates to TRUE and SoftICE pops up.

bpx myaddr IF (bpcount==5)
116 Using SoftICE

Conditional Breakpoints
Use BPCOUNT only on the righthand side of compound conditional expressions for
BPCOUNT to increment correctly:

bpx myaddr if (eax==1) && (bpcount==5)

Due to the early-out algorithm employed by the expression evaluator, the BPCOUNT==5
expression will not be evaluated unless EAX==1. (The C language works the same way.)
Therefore, by the time BPCOUNT==5 gets evaluated, the expression is TRUE. BPCOUNT
will be incremented and if it equals 5, the full expression evaluates to TRUE and SoftICE
pops up. If BPCOUNT != 5, the expression fails, BPMISS is incremented and SoftICE will
not pop up (although BPCOUNT is now 1 greater).

Once the full expression returns TRUE, SoftICE pops up, and all instance counts
(BPCOUNT and BPMISS) are reset to 0.

Note: Do not use BPCOUNT before the conditional expression, otherwise BPCOUNT will
not increment correctly:
bpx myaddr if (bpcount==5) && (eax==1)

BPMISS

The value for the BPMISS expression function is the current number of times that the
breakpoint was evaluated as FALSE.

The expression function is similar to the BPCOUNT function. Use it to specify that SoftICE
pop up in situations where the breakpoint is continually evaluating to FALSE. The value of
BPMISS will always be one less than you expect, because it is not updated until the
conditional expression is evaluated. You can use the (>=) operator to correct this delayed
update condition.

Example: bpx myaddr if (eax==43) || (bpmiss>=5)

Due to the early-out algorithm employed by the expression evaluator, if the
expression eax==43 is ever TRUE, the conditional evaluates to TRUE and SoftICE
pops up. Otherwise, BPMISS is updated each time the conditional evaluates to
FALSE. After 5 consecutive failures, the expression evaluates to TRUE and SoftICE
pops up.
Using SoftICE 117

Using Breakpoints
BPTOTAL

The value for the BPTOTAL expression function is the total number of times that the
breakpoint was triggered.

Use this expression function to control the point at which a triggered breakpoint causes a
popup to occur. The value of this expression is the total number of times the breakpoint was
triggered (refer to the Hits field in the output of the BSTAT command) over its lifetime. This
value is never cleared.

Example: The first 50 times this breakpoint is triggered, the condition evaluates to FALSE
and SoftICE will not pop up. Every time after 50, the condition evaluates to
TRUE, and SoftICE pops up on this and every subsequent trap.

bpx myaddr if (bptotal > 50)

You can use BPTOTAL to implement functionality identical to that of BPCOUNT. Use the
modulo “%” operator as follows:

if (!(bptotal%COUNT))

The COUNT is the frequency with which you want the breakpoint to trigger. If COUNT is
4, SoftICE pops up every fourth time the breakpoint triggers.

BPLOG

Use the BPLOG expression function to log the breakpoint to the history buffer. SoftICE does
not pop up when logged breakpoints trigger.

Note: Actions only execute when SoftICE pops up, so using actions with the BPLOG
function is pointless.

The BPLOG expression function always returns TRUE. It causes SoftICE to log the
breakpoint and relevant information about the breakpoint to the SoftICE history buffer.

Example: Any time the breakpoint triggers and the value of EAX equals 1, SoftICE logs the
breakpoint in the history buffer. SoftICE will not popup.
bpx myaddr if ((eax==1) && bplog)
118 Using SoftICE

Conditional Breakpoints
BPINDEX

Use the BPINDEX expression function to obtain the breakpoint index to use with breakpoint
actions.

This expression function returns the index of the breakpoint that caused SoftICE to pop up.
This index is the same index used by the BL, BC, BD, BE, BPE, BPT, and BSTAT
commands. You can use this value as a parameter to any command that is being executed as an
action.

Example: This example of a breakpoint action causes the BSTAT command to be executed
with the breakpoint that caused the action to be executed as its parameter:

bpx myaddr do “bstat bpindex”

This example shows a breakpoint that uses an action to create another breakpoint:

bpx myaddr do “t;bpx @esp if(tid==_tid) do \“bc bpindex\”;g”

Note: BPINDEX is intended to be used with breakpoint actions, and causes an error if it is
used within a conditional expression. Its use outside of actions is allowed, but the result
is unspecified and you should not rely on it.

Using Local Variables in Conditional Expressions

SoftICE lets you use local variable names in conditional expressions as long as the type of
breakpoint is an execution breakpoint (BPX or BPM X). SoftICE does not recognize local
symbols in conditional expressions for other breakpoint types, such as BPIO or BPMD RW,
because they require an execution scope. This type of breakpoint is not tied to a specific
section of executing code, so local variables have no meaning.

When using local variables in conditional expressions, functions typically have a prologue
where local variables are created and an epilogue where they are destroyed. You can access
local variables after the prologue code completes execution and before the epilogue code
begins execution. Function parameters are also temporarily inaccessible using symbol names
during prologue and epilogue execution, because of adjustments to the stack frame.

To avoid these restrictions, set a breakpoint on either the first or last source code line within
the function body. The following concepts use the foobar function to explain this concept.
Using SoftICE 119

Using Breakpoints
Foobar Function

1:DWORD foobar (DWORD foo)

2:{

3: DWORD fooTmp=0;

4:
5: if(foo)
6: {
7: fooTmp=foo*2;
8: }else{
9: fooTmp=1;
10: }
11:
12: return fooTmp;
13:}

Source code lines 1 and 2 are outside the function body. These lines execute the prologue
code. If you use a local variable at this point, you receive the following symbol error:

: BPX foobar if(foo==1)
error: Undefined Symbol (foo)

Set the conditional on the source code line 3 where the local variable fooTmp is declared and
initialized, as follows:

: BPX .3 if(foo==0)

Source code line 13 marks the end of the function body. It also begins epilogue code
execution; thus, local variables and parameters are out of scope. To set a conditional at the end
of the foobar function, use source line 12, as follows:

: BPX.12 if(fooTmp==1)

Note: Although it is possible to use local variables as the input to a breakpoint command,
such as BPMD RW, you should avoid doing this. Local variables are relative to the
stack, so their absolute address changes each time the function scope where the variable
is declared executes. When the original function scope exits, the address tied to the
breakpoint no longer refers to the value of the local variable.

Referencing the Stack in Conditional Breakpoints

If you create your symbol file with full symbol information, you can access function
parameters and local variables through their symbolic names, as described in Using Local
Variables in Conditional Expressions on page 119. If, however, you are debugging without full
symbol information, you need to reference function parameters and local variables on the
stack. For example, if you translated a module with publics only or you want to debug a
function for an operating system, reference function parameters and local variables on the
stack.
120 Using SoftICE

Conditional Breakpoints
This section is specific to 32-bit flat application or system code.

Function parameters are passed on the stack, so you need to de-reference these parameters
through the ESP or EBP registers. Which one you use depends on the function’s prologue and
where you set the actual breakpoint in relation to that prologue.

Most 32-bit functions have a prologue of the following form:

PUSH EBP

MOV EBP,ESP

SUB ESP,size (locals)

Which sets up a stack frame as follows:

Use either the ESP or EBP register to address parameters. Using the EBP register is not valid
until the PUSH EBP and MOV EBP, ESP instructions are executed. Also note that once
space for local variables is created (SUB ESP,size) the position of the parameters relative to
ESP needs to be adjusted by the size of the local variables and any saved registers.

Typically you set a breakpoint on the function address, for example:

BPX IsWindow

When this breakpoint is triggered, the prologue has not been executed, and parameters can
easily be accessed through the ESP register. At this point, use of EBP is not valid.

To be sure that de-referencing the stack in a conditional expression operates as you would
expect, use the following guidelines.

Note: This assumes a stack-based calling convention with arguments pushed right-to-left.

• If you set a breakpoint at the exact function address, for example, BPX IsWindow, use
ESP+(param# * 4) to address parameters, where param# is 1…n.

Current EBP ®

Current ESP ®

PARAM n ESP+(n*4), or EBP+(n*4)+4
Pushed by
caller

PARAM #2 ESP+8, or EBP+C

PARAM #1 ESP+4, or EBP+8

RET EIP Ü Stack pointer on entry

Call
prologue

SAVE EBP Ü Base pointer (PUSH EBP, MOV EBP,ESP)

LOCALS+size-1

LOCALS+0 Ü Stack pointer after prologue
(SUB ESP, size (locals))

SAVE EBX optional save of ‘C’ registers Registers
saved by
compiler

SAVE ESI

SAVE EDI Ü Stack pointer after registers are saved

Stack Top

Stack Bottom
Using SoftICE 121

Using Breakpoints
• If you set a breakpoint inside a function body (after the full prologue has been executed),
use EBP+(param# * 4)+4 to address parameters, where param# is 1…n. Be sure that the
routine does not use the EBP register for a purpose other than a stack-frame.

• Functions that are assembly-language based or are optimized for frame-pointer omission
may require that you use the ESP register, because EBP may not be set up correctly.

Note: Once the space for local variables is allocated on the stack, the local variables can be
addressed using a negative offset from EBP. The first local variable is at EBP-4. Simple
data types are typically Dword sized, so their offset can be calculated in a manner
similar to function parameters. For example, with two pointer local variables, one will
be at EBP-4 and the other will be at EBP-8.

Performance

Conditional breakpoints have some overhead associated with run-time evaluation. Under
most circumstances you see little or no effect on performance when using conditional
expressions. In situations where you set a conditional breakpoint on a highly accessed data
variable or code sequence, you may notice slower system performance. This is due to the fact
that every time the breakpoint is triggered, the conditional expression is evaluated. If a routine
is executed hundreds of times per second (such as ExAllocatePool or SwapContext), the fact
that any type of breakpoint with or without a conditional is trapped and evaluated with this
frequency results in some performance degradation.

Duplicate Breakpoints

Once a breakpoint is set on an address, you cannot set another breakpoint on the same
address. With conditional expressions, however, you can create a compound expression using
the logical operators (&&) or (||) to test more than one condition at the same address.

Elapsed Time

SoftICE supports using the time stamp counter (RDTSC instruction) on all Pentium and
Pentium-Pro machines. When SoftICE first starts, it displays the clock speed of the machine
on which it is running. Every time SoftICE pops up due to a breakpoint, the elapsed time
displays since the last time SoftICE popped up. The time displays after the break reason in
seconds, milliseconds, or microseconds:

Break due to G (ET=23.99 microseconds)
122 Using SoftICE

Breakpoint Statistics
The Pentium cycle counter is highly accurate, but you must keep the following two issues in
mind:

1 There is overhead involved in popping SoftICE up and down. On a 100MHz machine,
this takes approximately 5 microseconds. This number is slightly variable due to caching
and privilege level changes.

2 If a hardware interrupt occurs before the breakpoint goes off, all the interrupt processing
time is included. Interrupts are off when SoftICE pops up, so a hardware interrupt
almost always goes off as soon as Windows NT resumes.

Breakpoint Statistics

SoftICE collects statistical information about each breakpoint, including the following:

• Total number of hits, breaks, misses, and errors

• Current hits and misses

Use the BSTAT command to display this information. Refer to the SoftICE Command
Reference for more information on the BSTAT command.

Referring to Breakpoints in Expressions

You can combine the prefix “BP” with the breakpoint index to use as a symbol in an
expression. This works for all BPX and BPM breakpoints. SoftICE uses the actual address of
the breakpoint.

Example: To disassemble code at the address of the breakpoint with index 0, use the
command:

U BP0
Using SoftICE 123

Using Breakpoints
Manipulating Breakpoints

SoftICE provides a variety of commands for manipulating breakpoints such as listing,
modifying, deleting, enabling, disabling, and recalling breakpoints. Breakpoints are identified
by breakpoint index numbers, which are numbers ranging from 0 to FF (hex). Breakpoint
index numbers are assigned sequentially as breakpoints are added. The following table
describes the breakpoint manipulation commands:

Note: Refer to the SoftICE Command Reference for more information on each of these
commands.

Using Embedded Breakpoints

It may be helpful for you to embed a breakpoint in your program source rather than setting a
breakpoint with SoftICE. To embed a breakpoint in your program, do the following:

1 Place an INT 1 or INT 3 instruction at the desired point in the program source.

2 To enable SoftICE to pop up on such embedded breakpoints, use the following
command:

• SET I1HERE ON for INT 1 breakpoints

• SET I3HERE ON for INT 3 breakpoints

Command Description

BD Disable a breakpoint.

BE Enable a breakpoint.

BL List current breakpoints.

BPE Edit a breakpoint.

BPT Use breakpoint as a template.

BC Clear (remove) a breakpoint.

BH Display breakpoint history.
124 Using SoftICE

It has long been an axiom of mine that the little things are
infinitely the most important.

à Sir Arthur Conan Doyle
8 Using Expressions

Expressions 127

Operators 127

Operator Precedence 129

Forming Expressions 130

Expression Types 134

Type Casting 137

Evaluating Symbols 139

Using Indirection With Symbols 139
Using SoftICE 125

Using Expressions
126 Using SoftICE

Expressions
Expressions

The SoftICE expression evaluator determines the values of expressions used with SoftICE
commands and conditional breakpoints. It provides full operator precedence; support for
standard C language arithmetic, bit-wise, logical, and indirection operators; predefined
macros for data type conversion; and access to common SoftICE and operating system values.

The SoftICE expression evaluator parses and evaluates expressions similarly to the way a C or
C++ language compiler translates expressions. If you are comfortable with either language,
you are already familiar with the grammar and syntax of SoftICE expressions.

Other than the maximum length of a SoftICE command line (80 characters), there are no
limitations on the complexity of an expression. You can combine multiple operators,
operands, and expressions to create compound expressions for conditional breakpoints or
expression evaluation.

Example: This example uses a compound expression to trigger a breakpoint if the first
parameter (ESP+4) passed to the IsWindow() API function is an HWND with the
value of 0x10022 or 0x1001E. If either of the two expressions is TRUE, the
conditional expression is TRUE, and the breakpoint triggers:

BPX IsWindow if (esp->4 == 10022) || (esp->4 == 1001E)

Note: The expression esp->4 is shorthand notation for *(esp+4).

Operators

The SoftICE expression evaluator supports the following operators sorted by type:

Indirection Operators Example

-> ebp->8 (gets Dword pointed to by ebp+8)

. eax.1C (gets Dword pointed to by eax+1c)

* *eax (gets Dword value pointed to by eax)

@ @eax (gets Dword value pointed to by eax)

Math Operators Example

unary + +42 (decimal)

unary - -42 (decimal)

+ eax + 1

- ebp - 4

* ebx * 4
Using SoftICE 127

Using Expressions
/ Symbol / 2

% (modulo) eax % 3

<< (logical shift left) bl << 1 (result is bl shifted left by 1)

>> (logical shift right) eax >> 2 (result is eax shifted right by 2)

Bitwise Operators Example

& (bitwise AND) eax & F7

| (bitwise OR) Symbol | 4

^ (bitwise XOR) ebx ^ 0xFF

~ (bitwise NOT) ~dx

Logical Operators Example

! (logical NOT) !eax

&& (logical AND) eax && ebx

|| (logical OR) eax || ebx

== (compare equality) Symbol == 4

!= (compare inequality) Symbol != al

< eax < 7

> bx > cx

<= ebx <= Symbol

>= Symbol >= Symbol

Special Operators Example

. (line number) .123 (value is address of line 123 in the current
source file)

(,) (grouping symbols) (eax+3) * 4

, (arglist) function(eax,ebx)

: (segment operator) es:ebx

function word(Symbol)

(prot-mode selector) #es:ebx (address is protected-mode
selector:offset)

$ (real-mode segment) $es:di (address is real-mode segment:offset)

Math Operators Example
128 Using SoftICE

Expressions
Operator Precedence

Operator precedence within the SoftICE expression evaluator is equivalent to the C language
operator precedence with the addition of the special SoftICE operators. Operator precedence
plays a crucial part in evaluating expressions, so the order in which you input expression
operators can have a dramatic result on the final result of the expression. To override the
default operator precedence to produce a desired result, use parentheses to force the order of
evaluation.

Example: In previous versions of SoftICE, the addition operator (+) and the multiplication
operator (*) had the same precedence, so the expression 3+4*5 evaluated to 35. The
new expression evaluator gives multiplication higher precedence, so the result of
3+4*5, which is equivalent to 3+(4*5), is 23. To achieve the result of 35, use
parentheses to force the addition to be evaluated first: (3+4)*5.

The following table lists all the operators in order of precedence. Operators of equivalent
precedence are evaluated according to their associativity.

Operator Associates Comment

(,), function scopes, function

->, . left-to-right indirection

: left-to-right selector : offset

#, $ right-to-left selector overrides

*, @,

unary +

unary -

!, ~

.

right-to-left indirection

default radix == decimal

default radix == decimal

Line Number

*, /, % left-to-right

+, - left-to-right

<<, >> left-to-right

<, <=, >, >= left-to-right

==, != left-to-right

& left-to-right

^ left-to-right

| left-to-right

&& left-to-right

|| left-to-right

comma left-to-right arglist
Using SoftICE 129

Using Expressions
Forming Expressions

The SoftICE expression evaluator accepts a variety of operands, such as symbols and
numbers, that you can combine with any SoftICE operator. SoftICE places an emphasis on
providing flexibility of expression, so input is as natural as possible.

Hint: Use the ? (evaluate expression) command to display the result of any expression.

Numbers

The SoftICE expression evaluator accepts numeric input in the following forms:

Character Constants

SoftICE supports the use of standard C language character constants such as '\b', 'ABCD', or
'\x23'. The default radix for character constants that begin with a backslash '\' is decimal. To
specify a hex character constant, use an x prefix such as in '\x23'.

Input Description

Hexadecimal Hexadecimal is the default radix for all numeric input and output. The valid
character set for hexadecimal numbers is [0-9, A-F]. Hexadecimal input can be
optionally preceded by the standard C language radix identifier: 0x. Examples of
valid hexadecimal numbers include:

FF, ABC, 0x123, 0xFFFF0000

The symbolic form of a valid hexadecimal number could conflict with a symbol
name. For example, ABC. Use the 0x form to ensure that the number is not
misinterpreted as a symbol name.

Decimal SoftICE uses the implied semantics of the unary + and unary - operators to force
the default radix to temporarily become decimal. This is based on the fact that
+FF and -ABC are relatively unnatural, but still legal, forms of saying decimal 255
and -2748. If you directly precede a number with a unary + or unary -, SoftICE
attempts to evaluate that number as decimal and, if that fails, as hexadecimal.

The following examples use the unary + and unary - operators to affect how the
radix of a number is interpreted:

• ? +42
0000002A 0000000042 "*"

• ? -42
FFFFFFD6 4294967254 (-42) "ÿÿÿö"

• ? -1a
FFFFFFE6 4294967270 (-26) "ÿÿÿæ"

• ? +ff
000000FF 0000000255 "ÿ"

• ? +(12)
00000012 0000000018 "·"

Note: The SoftICE line number operator (.) also changes the default radix to dec-
imal. The unary + operator is a NOP for expression evaluation, and other
than changing the default radix, it has no effect.
130 Using SoftICE

Expressions
Registers

SoftICE supports the standard names for the Intel register set:

Hint: You can use built-in functions to access individual flags within the EFL and FL flags
register. Refer to Built-in Functions on page 132.

Symbols

Symbol names are the symbolic representation of an address or value. They can be present in a
variety of forms, including symbol tables, exports, or built-in functions.

The form of symbol names closely follows the C language definition, but extensions have
been made for other languages, including assembler and C++. Legal symbol names start with
an at sign (@), underscore (_), or a letter from A through Z and are composed of an unbroken
string of letters (A through Z), numbers (0 through 9), or other legal symbol name characters
such as an underscore.

Note: C++ symbols may include the scope (::) operator, where the symbol name form is
CLASS::MEMBER.

Each time symbols are loaded into SoftICE, they are placed in a separate table. Symbols used
for each executable are placed in a separate table. SoftICE does not find a symbol unless it is in
the currently active table, because each table is treated as a separate entity. Refer to the TABLE
command in the SoftICE Command Reference.

Note: This does not apply to exports, because SoftICE treats all exports as one homogeneous
unit whereas symbol tables are discrete entities.

A symbol table specifier can precede a symbol name; this enables symbols from different tables
to be used in a single expression. The table name and the symbol name are delimited by an
exclamation point (!), for example:

table-name!symbol-name

AH CS EBX FL

AL CX ECX FS

AX DH EDI GS

BH DI EDX IP

BL DL EFL SI

BP DS EIP SP

BX DX ES SS

CH EAX ESI

CL EBP ESP
Using SoftICE 131

Using Expressions
Built-in Functions

SoftICE predefines a number of functions for use in expressions. They take a variety of forms
and represent static values, dynamic values within the operating system or SoftICE, or
functions that can be used within expressions to modify values or translate data types.

Use functions that do not take arguments just like symbols from a symbol table. Functions
that accept arguments operate on user-specified values, looking and behaving like C language
functions and have the following form:

FUNC (arg-list)

Note: Function names are superseded by a symbol of the same name within a symbol table or
export table.

The following functions are defined for SoftICE:

Function Name Description Example

Byte Get low-order byte ? Byte(0x1234) = 0x34

Word Get low-order word ? Word(0x12345678) = 0x5678

Dword Get low-order dword ? Dword(0xFF) =0x000000FF

HiByte Get high-order byte ? HiByte(0x1234) = 0x12

HiWord Get high-order word ? HiWord(0x12345678) = 0x1234

Sword Convert byte to signed word ? Sword(0x80) = 0xFF80

Long Convert byte or word to signed long ? Long(0xFF) = 0xFFFFFFFF

? Long(0xFFFF) = 0xFFFFFFFF

WSTR Display as Unicode string ? WSTR(eax)

Flat Convert a selector-relative address to a
linear (flat) address

? Flat(fs:0) = 0xFFDFF000

CFL Carry Flag ? CFL = bool-type

PFL Parity Flag ? PFL = bool-type

AFL Auxiliary Flag ? AFL = bool-type

ZFL Zero Flag ? ZFL = bool-type

SFL Sign Flag ? SFL = bool-type

OFL Overflow Flag ? OFL = bool-type

RFL Resume Flag ? RFL = bool-type

TFL Trap Flag ? TFL = bool-type

DFL Direction Flag ? DFL = bool-type

IFL Interrupt Flag ? IFL = bool-type

NTFL Nested Task Flag ? NTFL = bool-type
132 Using SoftICE

Expressions
Eaddr Function

The Eaddr function returns the effective address, if any, that the instruction at the current EIP
uses. The EIP register points to that instruction.

Note: The effective address of the current instruction, if any, and the value at that address also
display in the Register window directly beneath the flag settings.

IOPL IOPL level ? IOPL = current IO privilege
level

VMFL Virtual Machine Flag ? VMFL = bool-type

IRQL Windows NT OS IRQ Level ? IRQL = unsigned-char

DataAddr Returns the address of the first data
item displayed in the Data window

dd @dataaddr

CodeAddr Returns the address of the first
instruction displayed in the Code
window

? codeaddr

Eaddr Effective address, if any, of the current
instruction. Refer to Eaddr Function on
page 133

Evalue Current value at the effective address.
Refer to Evalue Function on page 134

Process KPEB (Kernel Process Environment
Block) of the Active OS process

? process

Thread KTEB (Kernel Thread Environment
Block) of the Active OS thread

? thread

PID Active process Id ? pid == Test32Pid

TID Active thread Id ? tid == Test32MainTid

BPCount Breakpoint instance count. For these BP
functions, refer to Conditional Breakpoint
Count Functions on page 116

bp <bp params> IF
bpcount==0x10

BPTotal Breakpoint total count bp <bp params> IF
bptotal>0x10

BPMiss Breakpoint instance miss count bp <bp params> IF
bpmiss==0x20

BPLog Breakpoint silent log bp <bp params> IF bplog

BPIndex Current Breakpoint Index # bp <bp params> DO “bd
bpindex”

Function Name Description Example
Using SoftICE 133

Using Expressions
The x86 processor supplies a variety of memory addressing modes such as register+offset and
register+register. The result of computing the memory address is called the effective address. An
instruction that uses a memory addressing mode is said to have an effective address as its
source or destination. An x86 instruction never has an effective address as both source and
destination.

Some instructions may not involve an effective address, either because only registers are used
or because the memory addressing is done in a way specific to the instruction type, such as
with the PUSH and POP instructions.

Example: The current instruction is:

MOV ECX,[ESP+4]

The Eaddr function returns a value equal to ESP+4, that is, the current value of
ESP plus 4.

Example: The current instruction is:

ADD BYTE PTR [ESI+EBX+2],55

The Eaddr returns the result of ESI+EBX+2.

Evalue Function

Evalue returns the value at the effective address, if any, of the current instruction. This is not
necessarily the same as Eaddr->0, because Evalue is sensitive to the operand size. Evalue
returns a byte, word, or dword as appropriate.

Note: The effective address of the current instruction, if any, and the value at that address
display in the Register window directly beneath the flag settings.

Expression Types

The SoftICE expression evaluator uses a very basic type system that categorizes all expression
values into one of the following types:

Note: As a class, functions do not have a type, but they resolve into one of the types
previously listed.

Type Example

Literal-type 1, 0x80000000, ‘ABCD’

Register-type EAX, DS, ESP

Symbol-type PoolHitTag, IsWindow

Address-type 40:17, FS:18, &Symbol
134 Using SoftICE

Expressions
In most cases, you can ignore the distinction between types as it is only important to SoftICE.
In the cases of symbol-type and address-type, however, there are semantics or restrictions that
are important to understand.

The symbol-type is used for symbol names that are in export or symbol tables. In general, the
type represents the linear address of a symbol within a code or data segment. The symbol type
also represents the contents of memory at that linear address. This is similar to the use of a
variable in a C program, but because SoftICE is a debugger and not a compiler, there are a few
semantic differences. SoftICE determines whether you mean contents-ofor address-of based on
the context of how you use the symbol/variable in an expression. In general, the way SoftICE
treats a symbol seems completely natural, not unlike that of the C compiler; but, in cases
where you are not sure how SoftICE interprets the symbol, you can explicitly state:
address-of (&Symbol) or contents-of (*Symbol).

SoftICE treats a symbol as an address-type if you use it in an expression where an address-type
is legal and it makes sense to use an address. Otherwise, SoftICE automatically indirects the
symbol, taking the contents of the memory the symbol represents. There are many operations
that are illegal or do not make sense for address-types such as multiplication and division, so a
majority of the operators used with the symbol-type act like a C compiler and automatically
take the contents-of at the address for the symbol.

The following summary shows how SoftICE interprets symbols within expressions:

Example Equivalent Expression Result Type (for Symbol)

u Symbol u &Symbol address-of

db Symbol + 1 db &Symbol + 1 address-of

db Symbol + ds:8000 db *Symbol + ds:8000 contents-of

db Symbol + Symbol2 db &Symbol + *Symbol2 address-of

? Symbol - 1 ? &Symbol - 1 address-of

? Symbol - ds:8000 ? &Symbol - ds:8000 address-of

? Symbol - Symbol2 ? *Symbol - *Symbol2 contents-of

? Symbol && 1 ? *Symbol && 1 contents-of

? Symbol && ds:8000 ? *Symbol && ds:8000 contents-of

? Symbol && Symbol2 ? *Symbol && *Symbol2 contents-of

? Symbol <= 8000 ? *Symbol <= 8000 contents-of

? Symbol != &Symbol2 ? &Symbol != &Symbol2 address-of

? Symbol == Symbol2 ? *Symbol == *Symbol2 contents-of
Using SoftICE 135

Using Expressions
The following operations cannot be directly performed on or between address-types:

Note: Unlike symbol-types, SoftICE does not automatically indirect an address-type. You
must explicitly indirect the address-type using one of the indirection operators.

Indirection

There is a subtle difference between the indirection operators (->) and (.) and the indirection
operators (*) and (@). The result of an (->)or (.) operator is a plain Dword value, while the
result of (*) and (@) is an address-type.

The following expression is illegal, because multiplication is not a valid operation for
addresses:

? (*Symbol)*3

If you try this, you receive the error message Expecting value, not address .

However, the following expression is perfectly legal, because the result of Symbol->0 is a plain
value, not an address-type:

? (Symbol->0)*3

This distinction is useful when performing multiple indirections in 16-bit code, because
address-type values retain segment/selector information.

? Symbol : 8000 ? *Symbol : 8000 contents-of

? -Symbol ? -*Symbol contents-of

? !Symbol ? !*Symbol contents-of

? Symbol->4 ? *(&Symbol+4) address-of

Invalid Expression Form Example

address-type [*, /, %, <<, >>] any-type &Symbol * 4

address-type [+, &, |, ^] address-type ds:80ff ̂ &Symbol

any-type [->, .] address-type ebp->&Symbol2

address-type [:] any-type &Symbol : 8000

[-, ., &] address-type - &Symbol, .&Symbol (line
number)

address-type - address-type

Note: This expression is illegal only if address selectors do
not have the same value and type.

23:8fff - 23:4ff0 (legal)

1b::0 - 23:0 (illegal)

Example Equivalent Expression Result Type (for Symbol)
136 Using SoftICE

Expressions
Operand Sizes

The SoftICE expression evaluator treats all operand types as Dword (unsigned long) values.
This means that you must manually indicate the size of a type using type casting or one of the
conversion functions such as byte() or word().

Example: If you de-reference memory, SoftICE always returns a Dword value. This may not
be suitable, for example, if you are interested in a byte value. To correctly compare
a byte-value in a conditional expression, it is necessary to mask off the upper 24-
bits, leaving the lower 8-bits intact. In the following expression, assume Symbol is a
byte value:

BPX EIP IF (Symbol == 32)

This expression is likely to fail because SoftICE reads a full 32-bit value and
compares that to (DWORD) 32, or 0x00000032. This is probably not what you
want. The following expressions work correctly:

BPX EIP IF ((Symbol & FF) == 32)
or

BPX EIP IF (byte(Symbol)== 32)

Use whichever form you prefer; they are equivalent.

Type Casting

The expression evaluator supports the following:

• C++ style type casting

You can use the following form to cast any value to a defined type:

TypeName (expression)

Note: TypeName is case sensitive because a hash lookup is performed instead of a linear
search.

• Structure and class indirection through members

TypeName (expression)->member

After the indirection performs, the new type of the expression is automatically type cast
to the type of member. This allows multiple indirections to occur.

TypeName (expression)->member->member->member

At each indirection, the value of member is evaluated, the automatic type cast applied,
and the next member evaluated and type cast until the expression is resolved.
Using SoftICE 137

Using Expressions
• Taking the address of a member or type

You can use the & (address-of) operator to take the address of a structure or structure
member.

&TypeName(expression)->member[->member[->member]]

This allows you to set BPM style breakpoints on structure members.

• Displaying typed expressions

Wherever possible, the ? (evaluate expression) command displays the result of an
expression as a type. Many normal expressions, like registers, have default types.

For complex types, the class or structure members are expanded. Only members at the
root level of the object are expanded. Note that base and virtual base classes are
considered to be root objects.

Example: :? LPSTR (*(ebp-30))
char * = 0x009D000C
<"C:\TOMSDEV\WINICE\NTICE"> char = 0x43 , 'C'

Example: :? STHashTable (a7bcb0)
class STHashTable = {...}
struct STHashNode * * pHashTable = 0x0089000C <{...}>
unsigned long bucketSize = 0x25
class GrowableArray * pHashEntries = 0x00A7BCC0 <{...}>

Example: :? STHashTable (a7bcb0)->pHashEntries
class GrowableArray * =0x00A7BCC0 <{...}>
unsigned char * arrayBase = 0x00790078 <"">
unsigned char * nextItem = 0x00790078 <"">
unsigned long memAvail = 0x1000
unsigned long elementSize = 0x10

• Displaying pointers to pointers

Types that are pointers to pointers display the value pointed to.

typedef LPSTR *LPLPSTR ;

? LPLPSTR (eax)

char **eax = 0x127894 <0x434000>

where 0x127894 represents the pointer value and 0x434000 represents the value of the
pointer that it points to.

• Displaying unicode strings

Use the WSTR type cast operator to display unicode strings.

? WSTR (eax)

short *eax = <"Company Name">
138 Using SoftICE

Expressions
Evaluating Symbols

When data type information is available, using the ? (evaluate expression) command with a
symbol yields the contents of the symbol rather than the address of the symbol. For example,
MyVariable is an integer variable containing the value 5, so you get the following:

? MyVariable
int=0x5,"\0\0\0\x05"

To get the address of MyVariable, use the following:

? &MyVariable

If you use a symbol in conjunction with a command other than ?, the symbol yields the
address of the symbol instead of its contents. For example, if you enter DD MyVariable, the
Data window displays at the address of MyVariable and the first dword is the number 5.

Using Indirection With Symbols

When you create your symbol file with complete type and symbol information, the expression
evaluator supports the ability to dereference through a symbol name using that symbol’s type,
You can also take the address of a member through a symbol.

typedef struct Test

{
DWORD dword ;
LPSTR lpstr ;

} Test ;

Test test={ 1, “test String” } ;

? test->dword
unsigned long dword=1

? test->lpstr
char *lpstr=0x123456 ,”Test String”>

? &test
void * =0x123440

? &test->dword
void *=0x123440

? &test->lpstr
void *=0x123444

You can do the same thing through type casting, as follows:

Test(eax)->dword or Test(eax)->lpstr

and
&Test(eax)->dword or &Test(eax)->lpstr
Using SoftICE 139

Using Expressions
140 Using SoftICE

Distinct, and visible; symbols devine...

à John Keats
9 Loading Symbols for
System Components

Loading Export Symbols for DLLs and EXEs 143

Using Unnamed Entry Points 143

Using Export Names in Expressions 144

Loading 32-bit DLL Exports Dynamically 144

Using Windows NT Symbol (DBG) Files with SoftICE 145

Using Windows 95 Symbol (.SYM) Files with SoftICE 145
Using SoftICE 141

Loading Symbols for System Components
142 Using SoftICE

Loading Export Symbols for DLLs and EXEs
Loading Export Symbols for DLLs and EXEs

Exports are an aspect of the 16-bit and 32-bit Windows executable formats that enable
dynamic (run-time) linking, usually between an executable that imports the functions and a
.DLL that exports the functions.

The information in the executable file format associates an ASCII name and an ordinal
number, or sometimes just an ordinal number, to an entry point in the module. It is
advantageous to load the export information as symbols into the debugger, particularly when
debugging information is not available. Exports are ordinarily used only by DLLs, but
occasionally an .EXE may have exports as well; NTOSKRNL.EXE is such a case.

You can set the SoftICE initialization settings to load export symbols for any 16-bit or 32-bit
.DLL or .EXE. When SoftICE loads, it loads the export files and makes their symbols
available for use in any SoftICE expression. They are also automatically displayed when
disassembling code. To see a list of all exported symbols that SoftICE knows about, use the
EXP command. Refer to Modifying SoftICE Initialization Settings on page 155 for more
information about pre-loading exports.

When displaying 32-bit exports in SoftICE, if the module is not yet loaded, the ordinal
segment displays as FE: and the offset is the offset from the 32-bit image base. Once the
module is mapped into any process, selector:offset appears. The offset now contains the image
base address added in.

When a 32-bit module is unloaded from all processes that might have opened it, all addresses
return to the ordinal FE:offset address.

Note: When a .DLL is mapped into two processes at different base virtual addresses, the
export table uses the base address of the first process to open the .DLL, but the
addresses will be wrong for the other. You can normally avoid this by choosing an
appropriate preferred load address for the .DLL or by rebasing the .DLL.

Note: The only 16-bit exports loaded are those from the non-resident export section; this is
usually most or all of the exports for the module.

Using Unnamed Entry Points

For 32-bit exports, SoftICE shows all exported entry points even if they do not have names
associated with them. For 16-bit exports, SoftICE only shows names. For exported entry
points without names, SoftICE forms a name in the following format:

ORD_xxxx

where xxxx is the ordinal number.
Using SoftICE 143

Loading Symbols for System Components
Names of this form can overlap, because multiple DLLs can have unnamed ordinals. To be
sure you are using the correct symbol, precede the symbol with the module name followed by
an exclamation point.

Example: To refer to KERNEL32 export ordinal number one, use the following expression:

KERNEL32!ORD_0001

The number following the ORD_ prefix does not require the correct number of
leading zeroes; either ORD_0001 or ORD_1 is acceptable. The following
expression is equivalent to the preceding example:

KERNEL32!ORD_1

Using Export Names in Expressions

SoftICE searches all 32-bit export tables prior to searching 16-bit export tables. This means
that if the same name exists in more than one type of table, SoftICE uses the 32-bit export
table. If you need to override this behavior, precede the export symbol with the module name
followed by an exclamation point.

Example: When specifying the symbol GlobalAlloc, SoftICE uses the 32-bit export symbol
from KERNEL32.DLL rather than the 16-bit export symbol of the same name in
KRNL386.EXE. You can access the 16-bit version of GlobalAlloc by specifying the
complete export symbol name:

KERNEL!GlobalAlloc

Also, for each type of export (32-bit and 16-bit), the search order is controlled by the order in
which the exports are loaded.

Loading 32-bit DLL Exports Dynamically

SoftICE lets you load 32-bit exports without having to restart the system. To load 32-bit
exports dynamically, do the following:

1 Start Symbol Loader.

2 Either choose LOAD EXPORTS from the File menu or click the LOAD EXPORTS button.

The Load Exports window appears.

3 Select the files you want to load and click OPEN.
144 Using SoftICE

Using Windows NT Symbol (DBG) Files with SoftICE
Using Windows NT Symbol (DBG) Files with SoftICE

Microsoft supplies debugging information for key Windows NT components. This
debugging information takes the form of .DBG files, which contain COFF debug data for the
corresponding .EXE or .DLL. You can find the .DBG files on the Windows NT CD-ROM or
you can download them with the associated service pack. To use a .DBG file with SoftICE,
use Symbol Loader to translate it to a .NMS file and load it.

Using Windows 95 Symbol (.SYM) Files with SoftICE

The Windows 95 DDK includes symbol information for some system modules in the form of
.SYM files. Use either Symbol Loader or NMSYM to translate the .SYM files into NMS
format and load them into SoftICE.
Using SoftICE 145

Loading Symbols for System Components
146 Using SoftICE

But here, unless I am mistaken, is our client.

à Sir Arthur Conan Doyle
10 Using SoftICE with a
Modem

Introduction 149

Hardware Requirements 149

Establishing a Connection 149

Using SERIAL.EXE by Modem 150

DIAL Command 150

ANSWER Command 151
Using SoftICE 147

Using SoftICE with a Modem
148 Using SoftICE

Introduction
Introduction

You can operate SoftICE remotely over a modem. This is particularly useful for debugging
program faults that occur at an end-user site that you cannot reproduce locally.

When you operate SoftICE over a modem, the local PC runs both SoftICE and the
application you are debugging. The remote PC behaves as a dumb terminal that serves to
display the output for your SoftICE session and to accept keyboard input. SoftICE does not
provide mouse support for the remote computer.

Hardware Requirements

SoftICE has the following hardware requirements for the modems you use to connect the
local and remote systems:

• The modem accepts the industry-standard AT commands such as ATZ and ATDT, and
returns standard result codes such as RING and CONNECT.

• The modem executes a reliable error detecting and correcting protocol such as V.42 or
MNP5. This is important because the communication protocol used by SoftICE does
not include error detection.

Establishing a Connection

When using SoftICE over a modem, either the local or remote party can dial to initiate a
connection.

Do the following to establish a connection where the local SoftICE user dials the remote user:

1 Remote user runs SERIAL.EXE.

2 SoftICE user invokes the DIAL command.

A connection is established and the remote user is in control of SoftICE.

Do the following to establish a connection where the remote user dials the local SoftICE user:

1 Local SoftICE user invokes the ANSWER command to prepare to answer a call.

2 Remote user dials out using SERIAL.EXE.

A connection is established and the remote user is in control of SoftICE.

The following sections describe how to use SERIAL.EXE and the DIAL and ANSWER
commands. Refer to the SoftICE Command Reference for more information on the commands.
Using SoftICE 149

Using SoftICE with a Modem
Using SERIAL.EXE by Modem

SERIAL.EXE is an MS-DOS program that acts as a dumb terminal for SoftICE, displaying
output and accepting keyboard input. The screen that SERIAL.EXE shows is exactly what
you would see if you were running SoftICE on a local machine.

Note: You can use the program SERIAL.EXE with a serial connection or by modem. If you
want to use SoftICE with a serial connection, refer to Chapter 2: Installing SoftICE on
page 9.

The command-line syntax of SERIAL.EXE is

SERIAL.EXE [r] [com-port] [baud-rate] [I” init-string ”] [P number]

When a connection is established, the person using SERIAL.EXE sees the familiar SoftICE
text-mode screen and is able to control SoftICE remotely.

DIAL Command

Use the DIAL command within SoftICE to place an outgoing call. The remote user must
already be running SERIAL.EXE in answer mode.

r Use the r option when you are running in a DOS box in Windows NT on the
remote machine. The option disables FIFO and resets the baud-rate, stop bits,
and parity.

com-port Is a serial port number, 1-4; it must be specified.

baud-rate Is the rate at which SERIAL.EXE communicates with the modem. It must be
specified. It does not need to match the rate specified with the DIAL and
ANSWER commands at the SoftICE end of a connection.

I Use to specify the modem initialization commands.

init-string Is a modem command that must be used to initialize the modem.

P Is used to specify a phone number.

If the P option is used to specify a phone number, SERIAL dials the number and
attempts to establish a connection with the SoftICE user who must have already
issued the ANSWER command in SoftICE.
For example: SERIAL 1 57000 p1-603-555-1212.

If the P option is not specified, SERIAL operates in an answer mode, waiting for
an incoming call. For example, SERIAL 1 57000.

number Is the phone number to dial (when SERIAL is used in dial mode). The string sent
to the modem is “ATDTnumber”. For pulse dialing, use a P as the first digit of the
number (this may not work with all modems).
150 Using SoftICE

Establishing a Connection
The command syntax is

DIAL [ON [com-port] [baud-rate] [I= init-string] [P= number]|OFF]

ANSWER Command

The ANSWER command configures SoftICE to accept an incoming call at any time from
another computer running SERIAL.EXE.

The command syntax is

ANSWER [ON [com-port] [baud-rate] [I= init-string]|OFF]

ON Starts dialing.

OFF Terminates a remote session.

com-port Is a serial port number, 1-4; default is 1.

baud-rate Is the rate at which SoftICE communicates with the modem. The default is 57000.
It does not need to match the rate specified with SERIAL.EXE at the other end of
the connection. If baud-rate is specified, com-port must also be specified.

I Use to specify the modem initialization commands.

init-string Is a modem command that can be used to initialize the modem. If no init string is
specified on the command line, the last init string specified (if any), or the init
string specified by the SoftICE initialization settings (if set) is used.

P Is used to specify a phone number.

If the P option is used to specify a phone number, SoftICE dials the number and
attempts to establish a connection with the SERIAL.EXE user who must be
waiting in answer mode.

number Is the phone number to dial. The string sent to the modem is “ATDTnumber”. For
pulse dialing, use a P as the first digit of the number (this may not work with all
modems). If no number is specified on the command line, the last number
specified is used (if any), or the number specified by the SoftICE initialization
setting is used (if set). For example, DIAL ON 1 57000 p=603-555-1212.

ON Enables answer mode.

OFF Disables answer mode.

com-port Is a serial port number, 1-4; default is 1.

baud-rate Is the rate at which SoftICE communicates with the modem. The default is 57000.
It does not need to match the rate specified with SERIAL.EXE at the other end of
the connection. If baud-rate is specified, com-port must also be specified.

init-string Is a modem command that can be used to initialize the modem. If no init string is
specified on the command line, the last init string specified (if any), or the init
string specified by the SoftICE initialization settings (if set) is used. For example,
ANSWER ON 1 57000.
Using SoftICE 151

Using SoftICE with a Modem
152 Using SoftICE

Chiefly the mould of a man’s fortune is in his own hands.

à Sir Francis Bacon
11 Customizing SoftICE

Modifying SoftICE Initialization Settings 155

Modifying General Settings 155

Pre-loading Symbols and Source Code 157

Pre-loading Exports 159

Configuring Remote Debugging 159

Modifying Keyboard Mappings 160

Working with Persistent Macros 162

Setting Troubleshooting Options 165
Using SoftICE 153

Customizing SoftICE
154 Using SoftICE

Modifying SoftICE Initialization Settings
Modifying SoftICE Initialization Settings

SoftICE provides a variety of user-defined settings that determine your debugging
environment at initialization. These settings are categorized as follows:

• General — Provides a variety of useful SoftICE settings, including an initialization string
of commands that automatically executes when you start SoftICE.

• Symbols — Specifies .NMS symbol files to load at initialization for debugging device
drivers.

• Exports — Specifies DLLs and EXEs from which to load export symbols at initialization.

• Remote Debugging — Sets a default telephone number and modem initialization strings
for remote debugging over a serial port.

• Keyboard Mappings — Assigns SoftICE commands to function keys.

• Macro Definitions — Defines your own commands to use within SoftICE.

• Troubleshooting — Provides solutions to potential problems.

To modify the SoftICE initialization settings, do the following:

1 Start Symbol Loader.

2 From within Symbol Loader, choose SOFTICE INITIALIZATION SETTINGS... from the
Edit menu.

SoftICE displays the SoftICE Initialization Settings window as follows:

SOFTICE INIT SETTINGS DIALOG BOX HERE.

3 Select the tab that represents the settings you want to modify.

4 Modify the settings and click OK.

The following sections describe these settings.

5 Reboot your computer and run SoftICE to apply your changes.

Modifying General Settings

Modify the General SoftICE initialization settings as follows:

Initialization string

INITIALIZATION STRING executes a series of commands when SoftICE initializes. By default,
INITIALIZATION STRING contains the X (exit) command delimited with a semi-colon, as
follows:

X;
Using SoftICE 155

Customizing SoftICE
You might want to add additional commands to INITIALIZATION STRING to change the Ctrl-
D hot key sequence that pops up the SoftICE window, to change SoftICE window sizes, to
increase the number of lines displayed by SoftICE, or to use the Serial command for remote
debugging. If you are debugging a device driver, you might want to remove the X command
(or the semicolon that follows it) to prevent SoftICE from automatically exiting upon
initialization.

To add commands to INITIALIZATION STRING, type one or more semicolon delimited
commands before the X (exit) command. Commands are processed in the order in which you
place them. Thus, placing a command after the X command, means the command does not
execute until you pop up the SoftICE window. If you type a command without a semicolon,
SoftICE loads the command into the Command window, but does not execute it.

Example: The following initialization string switches SoftICE to 50-line mode, changes the
hot key sequence to Alt-Z, toggles the Register window on, and exits from
SoftICE:

LINES 50;ALTKEY ALT Z;WR;X;

Note: If you type a string that exceeds the width of the Initialization field, the field
automatically scrolls horizontally to allow you to view the information as you enter it.

History buffer size

HISTORY BUFFER SIZE determines the size of the SoftICE history buffer. By default, the
History buffer size is 256KB.

The SoftICE history buffer contains all the information displayed in the Command window.
Thus, saving the SoftICE history buffer to a file is useful for dumping large amounts of data,
disassembling code, logging breakpoints with the BPLOG command, and listing Windows
messages logged by the BMSG command. Refer to Saving the Command Window History
Buffer to a File on page 82.

Trace buffer size (Windows 95 only)

This setting determines the size of the trace buffer. The trace buffer can maintain back trace
for the BPR and BPRW commands. By default, TRACE BUFFER SIZE is set to 8 KB.

Total RAM (Windows 95 only)

This setting indicates the amount of physical memory installed in your system. Set TOTAL
RAM to a value equal to or greater than to the amount of memory on your system.
156 Using SoftICE

Modifying SoftICE Initialization Settings
Due to subtle architectural differences between systems, SoftICE cannot detect the amount of
physical memory installed in your computer under Windows 95. To map the relationship
between linear and physical memory, SoftICE uses a default value of 128 MB. While this
value is reasonable for most current development systems with 128 MB or less of physical
memory, this does not work correctly on systems with larger physical address spaces. This is
due to the fact that appropriate data structures for memory pages above 128 MB are not
created.

If your system contains less than 128 MB of physical memory, you can save a small amount of
memory by setting this field to the right value. The memory savings result because fewer data
structures are needed to map physical memory.

Display diagnostic messages

DISPLAY DIAGNOSTIC MESSAGES determines whether or not SoftICE turns on verbose mode
to display additional information, such as module loading and unloading, in the Command
window. By default, DISPLAY DIAGNOSTIC MESSAGES is turned on.

Trap NMI

TRAP NMI determines whether Non-maskable interrupt (NMI) trapping is turned on or off.
By default, TRAP NMI is turned on. NMI trapping is useful if you have a means of generating
an NMI, such as a breakout switch. Generating an NMI allows you to enter SoftICE even
when all interrupts are disabled. Simple ISA-based breakout switches are available. Contact
NuMega for more information.

Lowercase disassembly

LOWERCASE DISASSEMBLY determines whether or not SoftICE uses lowercase letters for
disassembling instructions. By default, LOWERCASE DISASSEMBLY is turned off.

Pre-loading Symbols and Source Code

Use the Symbols initialization settings in conjunction with the Module Translation settings to
pre-load symbols and source code when you start SoftICE. Pre-loading symbols and source
code is useful for debugging device drivers.

To pre-load symbols or source code, do the following:

1 In the Module Translation settings, select SYMBOLS AND SOURCE CODE if you want
your source code loaded in addition to the symbols.

2 Select PACKAGE SOURCE WITH SYMBOL TABLE.
Using SoftICE 157

Customizing SoftICE
3 In Symbol Loader, choose Translate from the Module menu to translate the module to a
.NMS symbol file.

4 Use the Symbols SoftICE Initialization settings to add your .NMS symbol file to the
Symbols list. The following section describes how to do this.

Adding Symbol Files to the Symbols List

From the Symbols tab in the SoftICE Initialization settings, do the following:

1 Click ADD.

SoftICE displays a browse window for you to locate the .NMS files that contain the
symbols and source code you want to pre-load.

2 Select one or more .NMS symbol files and click OK.

Hint: Normally, your .NMS symbol file has the same base name as the file you translated.
Under Windows 95, SoftICE can not pre-load files with long file names, because
SoftICE is in real-mode DOS when it initializes. If your module is a long file name,
create the .NMS file, rename the .NMS file to an eight-character name with the
extension .NMS, and select the renamed .NMS file when you add it to the symbols
list.
Alternately, you can use the Symbol Loader command-line utility, NMSYM, to specify
the output file name.

Hint: When you select PACKAGE SOURCE WITH SYMBOL TABLE, source files are part of the
.NMS symbol file. Thus, there are no restrictions on source file name lengths even
within Windows 95.

3 Every time you modify your source code, retranslate your module to create a new version
of the .NMS symbol file.

Removing Symbols and Source Code Pre-Loading

To prevent SoftICE from pre-loading the symbols or source code associated with a particular
file, select the file in the symbols list and click REMOVE.

Reserving Symbol Memory

SYMBOL BUFFER SIZE specifies, in kilobytes, the amount of memory to reserve for storing
certain types of debug information (for example, line number information). Under SoftICE
for Windows 95, this memory region also serves as a buffer for holding .NMS images at boot
time. By default, SoftICE reserves 1024KB under Windows 95 and 512KB under Windows
NT.

Typically 512KB is adequate for both Windows 95 and Windows NT. However, you may
need to increase the SYMBOL BUFFER SIZE under the following circumstances:
158 Using SoftICE

Modifying SoftICE Initialization Settings
• If you are debugging large programs, use 1024KB or more.

• If you are using Windows 95 and you are loading symbols at boot time, determine the
total size of all the .NMS files that are loaded at boot time and set the SYMBOL BUFFER
SIZE to this number.

To determine how much symbol memory is available, use the TABLE command. Note that
most symbol information is stored in dynamically allocated memory.

Pre-loading Exports

Use the Export initialization settings to select files from which SoftICE can extract export
information upon SoftICE initialization. Extracting export information is useful for
debugging DLLs when no debugging information is available.

Extracting Export Information

To select one or more files from which to extract export information, do the following:

1 Click ADD.

SoftICE displays a browse window for you to locate the files. Note that if you are
connected to a network, you can click NETWORK to display the contents of networked
drives.

2 Select one or more files from which to extract the information and click OK.

3 SoftICE places the files you selected in the Exports list.

Removing Files from the Exports List

To remove a file from the Exports list, select the file and click REMOVE.

Configuring Remote Debugging

The Remote Debugging settings allow you to determine your type of serial connection and to
preset a modem initialization string and phone number for the DIAL and ANSWER
commands. Alternately, you can specify these parameters directly when using the commands.
Refer to your modem documentation for the exact commands for your particular modem.

Telephone number

TELEPHONE NUMBER presets a phone number for the DIAL command, for example:
412-555-1212.
Using SoftICE 159

Customizing SoftICE
Serial connection (Windows 95 only)

If you are using SoftICE for Windows 95 and are debugging a remote system, choose the
communications port on the local system (COM1, COM2, COM3, or COM4) that you are
using for serial communication. When you are through debugging the remote system, change
this setting to None. By default, SERIAL CONNECTION is set to None.

Note: If you are using SoftICE for Windows NT, SoftICE automatically determines your
serial connection.

DIAL initialization string

DIAL INITIALIZATION STRING presets the modem initialization string for the DIAL
command, for example: ATX0.

ANSWER initialization string

ANSWER INITIALIZATION STRING presets the modem initialization string for the
ANSWER command, for example: ATX0.

Modifying Keyboard Mappings

Use Keyboard Mappings to reassign commands to SoftICE function keys or to specify new
ones. You can assign SoftICE commands to any of the 12 function keys or key combinations
involving Shift, Ctrl, or Alt and a function key.

Command Syntax

When modifying and creating function keys, you can use any valid SoftICE command and
the characters caret(^) and semicolon (;). Place a caret (^) at the beginning of a command to
instruct SoftICE to execute the command without placing it in the command line. The
semicolon behaves like the Enter key and instructs SoftICE to execute the command. You can
place one or more semicolons in the same string.
160 Using SoftICE

Modifying SoftICE Initialization Settings
Modifying Function Keys

To modify the SoftICE command assigned to a function key, do the following:

1 Select the function key you want to modify from the list of keyboard mappings and click
ADD.

Note: SoftICE uses the following abbreviations for the Function, Alt, Ctrl, and Shift keys:

2 Change the command in the Command field and click OK.

Creating Function Keys

To assign a command to a new function key or function key combination, do the following:

1 Determine a function key or function key combination to which no commands are
assigned.

2 Click ADD.

3 Select the function key you want to use from the Key list.

4 Select a modifier. To assign a command to a function key, click NONE. To assign a
command to a function key combination, select SHIFT, CTRL, or ALT.

5 Type a command in the Command field and click OK.

Deleting Function Keys

To delete a function key assignment, choose the function key and click REMOVE.

Key Abbreviation Example

Function F F1

Alt A AF1

Ctrl C CF1

Shift S SF1
Using SoftICE 161

Customizing SoftICE
Restoring Function Keys

The following table lists the default function key assignments:

You can modify individual function key assignments or click RESTORE DEFAULTS to restore
all the keys you edited or removed to their original settings. RESTORE DEFAULTS does not
remove any function keys you create.

Working with Persistent Macros

Macros are user-defined commands that you can use in the same way as built-in commands.
The definition, or body, of a macro consists of a sequence of command invocations. The
allowable set of commands includes other user-defined macros and command-line arguments.

There are two ways to create macros. You can create run-time macros that exist until you
restart SoftICE or persistent macros that are saved in the initialization file and automatically
loaded with SoftICE. This section describes how to create persistent macros. Refer to Using
Run-Time Macros on page 81 for more information about creating run-time Macros.

Default Function Key Assignments

F1 = H; F11 = ̂ G @SS:ESP;

F2 = ̂ WR; F12 = ̂ P RET;

F3 = ̂ SRC; SF3 = ̂ FORMAT;

F4 = ̂ RS; AF1 = ̂ WR;

F5 = ̂ X; AF2 = ̂ WD;

F6 = ̂ EC; AF3 = ̂ WC;

F7 = ̂ HERE; AF4 = ̂ WW;

F8 = ̂ T; AF5 = CLS;

F9 = ̂ BPX; AF11=dd dataaddr->0;

F10 = ̂ P; AF12=dd dataaddr->4;
162 Using SoftICE

Modifying SoftICE Initialization Settings
Creating Persistent Macros

To create a persistent macro, do the following:

1 Click ADD.

The Add Macro definition window appears.

2 Type the name of the macro in the Name field.

The macro name may be from three to eight characters long and may contain any alpha-
numeric character or underscore (_). It must include at least one alphabetic character. A
macro-name cannot duplicate an existing SoftICE command.

3 Type the macro definition in the Definition field.

The definition of a macro is a sequence of SoftICE commands or other macros separated
by semicolons. You are not required to terminate the final command with a semicolon.
Command-line arguments to the macro can be referenced anywhere in the macro body
with the syntax %<parameter# >, where parameter# is a number between one and eight.

Example: The command MACRO asm = “a %1” d efines an alias for the A (ASSEMBLE)
command. The %1 is replaced with the first argument following asm or simply
removed if no argument is supplied.

If you need to embed a literal quote character (”) or a percent sign (%) within the macro
body, precede the character with a backslash character (\). To specify a literal backslash
character, use two consecutive backslashes (\\).

Note: Although it is possible for a macro to call itself recursively, it is not particularly
useful, because there is no programmatic way to terminate the macro. If the macro
calls itself as the last command of the macro (tail recursion), the macro executes
until you use the ESC key to terminate it. If the recursive call is not the last
command in the macro, the macro executes 32 times (the nesting limit).

4 Click OK.

SoftICE places your persistent macro in the Macro Definitions list.

Macro Definition Examples

The following table provides examples of legal macro commands.

Legal Name Legal Definition Example

Qexp addr explorer; Query %1 Qexp

Qexp 140000

1shot bpx %1 do \”bc bpindex\” 1shot eip

or

1shot @esp
Using SoftICE 163

Customizing SoftICE
The following table provides examples of illegal macro commands:

Starting and Stopping Persistent Macros

Type the name of the persistent macro to execute it. To stop the execution of a persistent
macro, press the ESC key.

Setting the Macro Limit

Use MACRO LIMIT to specify the maximum number of macros and breakpoint actions you
can define during a SoftICE session. This number includes both run-time macros and
persistent macros. The default value of 32 is the minimum value. The maximum value is 256.

Modifying Persistent Macros

To modify a persistent macro, do the following:

1 Select the persistent macro you want to modify and click ADD.

2 In the Add macro definitions window, modify the Name and Definition fields as
appropriate, then click OK.

Deleting Persistent Macros

To delete a persistent macro, select the macro you want to delete and click REMOVE.

ddt dd thread ddt

ddp dd process ddp

thr thread %1 tid thr

or

thr -x

dmyfile macro myfile = \”TABLE %1;file \%1\” dmyfile mytable

myfile myfile.c

Illegal Name or Definition Explanation

Name: DD

Definition: dd dataaddr

This macro uses the name of a SoftICE command. SoftICE com-
mands cannot be redefined.

Name: AA

Definition: addr %1

The macro command name is too short. A macro name must be
between 3 and 8 characters long.

Name: tag

Definition: ? *(%2 -4)

The macro body references parameter %2 without referencing

parameter %1. You cannot reference parameter %n+1 without

referencing parameter %n.

Legal Name Legal Definition Example
164 Using SoftICE

Modifying SoftICE Initialization Settings
Setting Troubleshooting Options

These settings let you troubleshoot SoftICE. Modify these settings only when directed to do
so by NuMega Technical Support or to remedy the specific situations described within this
documentation. By default, the Troubleshooting settings are all turned off.

Hint: If you want to return all the troubleshooting settings to their original states, click
RESTORE DEFAULTS.

Hint: turned on more than one troubleshooting setting and you want to turn all the settings
off, use Restore Defaults instead of clicking each individual check box.

Disable mouse support

If you are having problems using your mouse in SoftICE, select DISABLE MOUSE SUPPORT.

Disable Num Lock and Caps Lock programming

If your keyboard locks or behaves erratically when you load SoftICE, select DISABLE NUM
LOCK AND CAPS LOCK PROGRAMMING. If this does not solve the problem and you are using
Windows NT, try the DO NOT PATCH KEYBOARD DRIVER setting.

Do not patch keyboard driver (Windows NT only)

If your keyboard locks or behaves erratically when you load SoftICE, select this setting to
prevent SoftICE from patching the keyboard driver. When you select this option, SoftICE
uses an alternate, typically less robust, method for keyboard handling. If this does not solve
the problem, try the DISABLE NUM LOCK AND CAPS LOCK PROGRAMMING setting.

Disable mapping of non-present pages

SoftICE attempts to find a page in physical memory even if the page table entry is marked as
not present. Select DISABLE MAPPING OF NON-PRESENT PAGES to turn off this feature.

Disable Pentium support

SoftICE automatically detects whether or not you are using a Pentium processor. If you are
using a new CPU with which SoftICE is unfamiliar and SoftICE mistakenly determines that
you are using a Pentium processor, select this setting to turn off Pentium support.

Disable thread-specific stepping

The P (step over) command is thread sensitive. The return breakpoint set by the P command
triggers only for the thread that was active when the P command was issued. Note that you
would normally want to be in the same thread you are debugging. To turn off this feature,
select DISABLE THREAD-SPECIFIC STEPPING.
Using SoftICE 165

Customizing SoftICE
166 Using SoftICE

But the Emperor has nothing on at all! cried a little child.

à Hans Christian Andersen
12 Exploring
Windows NT

Overview 169

Resources for Advanced Debugging 169

Inside the Windows NT Kernel 172

Managing the Intel Architecture 173

Windows NT System Memory Map 177

Win32 Subsystem 184

Inside CSRSS 184

USER and GDI Objects 186

Process Address Space 191

Heap API 192
Using SoftICE 167

Exploring Windows NT
168 Using SoftICE

Overview
Overview

Without qualification, the Windows NT operating system is an incredible feat of software
engineering and system design. It is hard to imagine any system of such complexity reaching
all of its design goals, including three of the most difficult: portability, reliability, and
extensibility, without compromising its interfaces or implementation. Yet, somehow the
system engineers at MicroSoft who design and develop Windows NT manage to keep each
and every component of the system smoothly interlocked, not unlike the precision gears of a
finely made watch. If you are going to write Windows NT applications, you should explore
what lies beneath your application code: the Windows NT operating system. The knowledge
you gain from the time you invest to go beneath your application and into the depths of the
system, will benefit both you and your application or driver.

This chapter provides a quick overview of the more pertinent and interesting aspects of
Windows NT. It focuses on areas where little or no documentation currently exists. By
combining this information with available reference material and a little practical application
using SoftICE, you should be able to gain a basic understanding of how the pieces of
Windows NT fit together.

Resources for Advanced Debugging

Microsoft provides several resources for advanced debugging including: checked build, the
Windows NT DDK, and .DBG files. The following sections discuss these resources:

Checked build

If you are not currently using the checked build (that is, the debug version) of Windows NT,
you are missing a lot of valuable information and debugging support that the operating
system provides. The checked build contains a wealth of information that is absent from the
free build (retail version). This includes basic debug messages, special flags used by the kernel
components that allow you to trace the system’s operation, and relatively strict sanity checking
of most system API calls. The size and layout of system data structures as well as the
implementation of system APIs in the checked build are nearly identical to that of the free
build. This allows you to learn and explore using the more verbose checked build, but still feel
completely comfortable if you end up debugging under the free build. All in all, if you want
to write more robust applications and drivers, use the checked build.

Windows NT DDK

The Windows NT DDK contains header files, sample code, on-line help, and special tools
that let you query various kernel components. The most obvious and useful resource is
NTDDK.H. Although there is quite a bit of information missing from this header file,
enough pertinent information is available to make it worth studying. Besides the basic data
structures needed for device driver development, system data structures are described (some
completely, others briefly, many not at all). There are also many API prototypes and type
Using SoftICE 169

Exploring Windows NT
enumerations that are useful for both exploration and development. There are also useful
comments about the system design, as well as restrictions and limitations. Most of the other
header files in the DDK are specific to the more esoteric aspects of the system, but
NTDEF.H, BUGCODES.H, and NTSTATUS.H are generally useful.

The Windows NT DDK includes a few utilities that are of general interest. For example,
POOLMON.EXE allows you to monitor system pool usage, and OBJDIR.EXE provides
information on the Object Manager hierarchy and information about a specific object within
the hierarchy. SoftICE for Windows NT provides similar functionality with the OBJDIR,
DEVICE, and DRIVER commands. The utility DRIVERS.EXE, like the SoftICE MOD
command, lists all drivers within the system, including basic information about the driver.
Some versions of the Windows NT DDK include a significantly more powerful version of the
standard PSTAT.EXE utility. PSTAT is a Win32 console application that provides summary
information on processes and threads. Included with the Win32 SDK and the Visual C++
compiler, are two utilities worth noting: PVIEW and SPY++. Both provide information on
processes and threads, and SPY++ provides HWND and CLASS information.

The Windows NT DDK also includes help files and reference manuals for device driver
development, as well as sample code. The sample code is most useful, because it provides you
with the information necessary for creating actual Windows NT device drivers. Simply find
something in your area of interest, build that sample, and step through it with SoftICE.

.DBG Files

Microsoft provides a separate DBG file for every distributed executable file with both the
checked and free builds of the Windows NT operating system. This includes the systems
components that make up the kernel executive, device drivers, Win32 system DLLs, sub-
system processes, control panel applets, and even accessories and games. The .DBG files
contain basic debug information similar to the PUBLIC definitions of a .MAP file. Every API
and global variable, exported or otherwise, has a basic definition (for example, name, section
and offset). Advanced type information such as structures and locals is not provided, but
having access to a public definition for each API makes debugging through system calls a lot
easier.

Hint: Using .DBG files is probably the most important aspect of setting up your
development and debugging environment. Select those components that are most
relevant to your development needs, find the corresponding .DBG file and use Symbol
Loader to create a .NMS file that SoftICE can load.
170 Using SoftICE

Overview
Regardless of your specific area of interest, load symbols for the following key system
components. The most important components are listed in bold typeface.

Resources

The following resources provide extensive information for developing drivers and applications
for Windows NT:

• Microsoft Developers Network (MSDN)

MSDN is published quarterly, on CD-ROM, and it contains a wealth of information
and articles on all aspects of programming Microsoft operating systems. This is one of the
only places where you can find practical information on writing Windows NT device
drivers.

• Inside Windows NT - Helen Custer, Microsoft Press

Inside Windows NT provides a high-level view of the design for the Windows NT
operating system. Each of the major sub-systems is thoroughly discussed, and many
block diagrams illuminate internal data structures, policies, and algorithms. Although the
contents of this book may seem highly abstracted from the actual operating system
implementation, once you step into OS code with SoftICE, many of the higher level
relationships become clear. Currently, this is the most valuable set of information on
Windows NT operating system internals. You will gain the most benefit from the
information in this book if you use SoftICE to explore the actual implementation of the
system design.

NTOSKRNL.EXE The Windows NT Kernel. (Most of the operating system resides here.)

HAL.DLL The Hardware Abstraction Layer. Important primitives for NTOSKRNL.

NTDLL.DLL Basic implementation of the Win32 API, and functionality traditionally
attributed to KERNEL. Also the interface between USER and SYSTEM
mode. Essentially replaces KERNEL32.DLL.

CSRSS.EXE The Win32 subsystem server process. Most subsystem calls are routed
through this process.

WINSRV.DLL Under Windows NT 3.51, the core implementation of USER and GDI
functionality. Only loaded in the context of CSRSS.

WIN32K.SYS A system device driver that replaces WINSRV.DLL and minimizes inter-
process communication between applications and CSRSS. May not be
available for all versions of the OS.

USER32.DLL Basic implementation of USER functionality. Mostly stubs to
WINSRV.DLL (via LPC to CSRSS). More recent versions contain more
implementation to minimize context switches.

KERNEL32.DLL. Some basic implementation of traditional KERNEL functionality, but
mostly stubs to NTDLL.DLL.
Using SoftICE 171

Exploring Windows NT
• Advanced Windows, 2nd Edition - Jeffery Richter, Microsoft Press

Advanced Windows is an excellent resource for the systems programmer developing
Win32 applications and system code. Richter presents extensive discussions of processes,
threads, memory management, and synchronization objects. Relevant sample code and
utilities are also provided.

Inside the Windows NT Kernel

To gain a basic understanding of Windows NT, look at the platform from many different
perspectives. A general knowledge of how Windows NT works at different levels enables you
to understand the constraints and assumptions involved in designing other aspects of the
operating system.

This section explains the most critical component of the operating system, the Windows NT
Kernel. It describes how Windows NT configures the core operating system data structures,
such as the IDT and TSS, and how to use corresponding SoftICE commands to illustrate the
Windows NT configuration of the CPU. It also examines a general map of the Windows NT
system memory area, describing important system data structures and examining the critical
role they play within the operating system.

A majority of the information in this section is based on the implementation details of the
following two modules:

• Hardware Abstraction Layer (HAL.DLL)

HAL is the Windows NT hardware abstraction layer. Its purpose is to isolate as many
hardware platform dependencies as possible into one module. This makes the Windows
NT kernel code highly portable. Various parts of the kernel use platform dependent
code, but only for performance considerations.

The primary responsibility of the HAL is to deal with very low-level hardware control
such as Interrupt controller programming, hardware I/O, and multiprocessor inter-
communication. Many of the HAL routines are dedicated to dealing with specific bus
types (PCI, EISA, ISA) and bus adapter cards. HAL also controls basic fault handling
and interrupt dispatch.
172 Using SoftICE

Inside the Windows NT Kernel
• The Kernel (NTOSKRNL.EXE)

The vast majority of the Windows NT operating system resides in the Windows NT
Kernel, or Kernel Executive. This is the kernel-level functionality that all other system
components, such as the Win32 subsystem, are built upon. The Kernel Executive
Services cover a broad range of functionality, including:

à Memory Management
à Object Manager
à Process and Thread creation and manipulation
à Process and Thread scheduling
à Local Procedure Call (LPC) facilities
à Security Management
à Exception handling
à VDM hardware emulation
à Synchronization primitives, such as Semaphores and Mutants
à Run Time Library
à File System
à I/O subsystems

Managing the Intel Architecture

One of the fundamental requirements of starting a protected-mode operating system is the
setup of CPU architecture, policies, and address space that the operating system will use.
System initialization is coordinated between NTLDR, NTDETECT, NTOSKRNL, and
HAL. Use the following SoftICE commands to obtain a general idea of how Windows NT
uses the Intel architecture to provide a secure and robust environment.

Note: The SoftICE Command Reference provides detailed information about using each
command.

Command Description

IDT Display information on the Interrupt Descriptor Table

TSS Display information about the Task State Segment

GDT Display information on the Global Descriptor Table

LDT Display information on the Local Descriptor Table
Using SoftICE 173

Exploring Windows NT
IDT (Interrupt Descriptor Table)

Windows NT creates an IDT for 255 interrupt vectors and maps it into the system linear
address space. The first 48 interrupt vectors are generally used by the kernel to trap
exceptions, but certain vectors provide operating system services or other special features. Use
the SoftICE IDT command to view the Windows NT Interrupt Descriptor Table.

Interrupt vectors 0x30 - 0x3F are mapped by the primary and secondary interrupt controllers,
so hardware interrupts for IRQ0 through IRQ15 are vectored through these IDT entries. In
many cases, these hardware interrupt vectors are not hooked, so the system assigns default
stub routines for each one. As devices require the use of these hardware interrupts, the device
driver requests to be connected. When the interrupt is no longer needed, the device driver
requests to be disconnected.

The default stubs are named KiUnexpectedInterrupt#, where # represents the unexpected
interrupt. To determine which interrupt vector is assigned to a particular stub, add 0x30 to
the UnexpectedInterrupt#. For example, KiUnexpectedInterrupt2 is actually vectored
through IDT vector 32 (0x30 + 2).

Interrupts for Virtual DOS machines (VDM), which include the WOW (16-bit Windows on
Window) subsystem, do not vector directly through the IDT. For a VDM, interrupts are
emulated by triggering a general protection fault that special VDM code within NTOSKRNL
handles. In most cases, the interrupt is eventually reflected back to the VDM for servicing.
MS-DOS Interrupt 21 is handled as a special case (since an actual IDT entry exists). This
could be for performance reasons, compatibility issues, or both.

Interrupt # Purpose

2 NMI. A Task gate is installed here so the OS has a clean set of registers, page-
tables, and level 0 stack. This enables the operating system to continue
processing long enough to throw a Blue Screen.

8 Double Fault. A Task gate is installed here so the OS has a clean set of registers,
page-tables, and level 0 stack. This enables the operating system to continue
processing long enough to throw a Blue Screen.

21 MS-DOS Int 21 trap. Only used for Virtual DOS Machines (VMD) and WOW.

2A Service to get the current tick count.

2B,2C Direct thread switch services.

2D Debug service.

2E Execute System Service. Windows NT transitions from user mode to system mode
using INT 2E. For more information, refer to the NTCALL command in the SoftICE
Command Reference.

30-37 Primary Interrupt Controller (IRQ0-IRQ7).

30 - HAL clock interrupt (IRQ0).

38-3F Secondary Interrupt Controller (IRQ8-IRQ15).
174 Using SoftICE

Inside the Windows NT Kernel
Drivers may install and uninstall interrupt handlers as necessary, using IoConnectInterrrupt
and IoDisconnectInterrupt. These routines create special thunk objects, allocated from the
Non-Pageable Pool, which contain data and code to manage simultaneous use of the same
interrupt handler by one or more drivers.

TSS (Task State Segment)

The purpose of the TSS is to save the state of the processor during task or context switches.
For performance reasons, Windows NT does not use this architectural feature and maintains
one base TSS that all processes share. As noted in the previous section on the Windows NT
IDT, other TSS data types exist, but are only used during exceptional conditions to ensure
that the system will not spontaneously reboot before Windows NT can properly crash itself.
Use the SoftICE TSS command to view the current TSS.

The TSS contains the offset from the base of the TSS to the start of the I/O bitmap. The I/O
bitmap determines which ports, if any, the code executing at Ring 3 can access directly. Under
Windows NT 3.51, when executing in a VDM, the TSS contains a valid offset to a I/O
bitmap that traps direct I/O for subsequent emulation by the operating system. When
executing a Win32 application, the TSS contains an invalid offset (it points beyond the
segment limit of the TSS). This forces the operating system to trap all direct I/O.

Inside the actual TSS data structure, the only field of real interest is the address of the Level 0
stack. This is the stack that is used when the CPU transitions from user mode to system
mode.

GDT (Global Descriptor Table)

Windows NT is a flat, 32-bit architecture. Thus while it still needs to use selectors, it uses
them minimally. Most Win32 applications and drivers are completely unaware that selectors
even exist. The following is abbreviated output from the SoftICE GDT command that shows
the selectors in the Global Descriptor Table.

GDTbase=80036000 Limit=03FF

0008 Code32 Base=00000000 Lim=FFFFFFFF DPL=0 P RE

0010 Data32 Base=00000000 Lim=FFFFFFFF DPL=0 P RW

001B Code32 Base=00000000 Lim=FFFFFFFF DPL=3 P RE

0023 Data32 Base=00000000 Lim=FFFFFFFF DPL=3 P RW

0028 TSS32 Base=8000B000 Lim=000020AB DPL=0 P B

0030 Data32 Base=FFDFF000 Lim=00001FFF DPL=0 P RW

003B Data32 Base=7FFDE000 Lim=00000FFF DPL=3 P RW
Using SoftICE 175

Exploring Windows NT
Note that the first four selectors address the entire 4GB linear address range. These are flat
selectors that Win32 applications and drivers use. The first two selectors have a DPL of zero
and are used by device drivers and system components to map system code, data, and stacks.
The selectors 1B and 23 are for Win32 applications and map user level code, data, and stacks.
These selectors are constant values and the Windows NT system code makes frequent
references to them using their literal values.

The selector value 30h addresses the Kernel Processor Control Region and is always mapped
at a base address of 0xFFDFF000. When executing system code, this selector is stored in the
FS segment register. Among its many other purposes, the Processor Control Region maintains
the current kernel mode exception frame at offset 0.

Similarly, the selector value 3Bh is a user-mode selector that maps the current user thread
environment block (UTEB). This selector value is stored in the FS segment register when
executing user level code and has the current user-mode exception frame at offset 0. The base
address of this selector varies depending on which user-mode thread is running. When a
thread switch occurs, the base address of this GDT selector entry is updated to reflect the
current UTEB.

Selector value 48h is an LDT type selector and is only used for VDM processes. Win32
applications and drivers do not use LDT selectors. When a Win32 process is active, the Intel
CPU’s LDT register is NULL. In this case, the SoftICE LDT command gives you a No LDT
error message. When a VDM or 16-bit WOW process is active, a valid LDT selector is set,
and it comes from this GDT selector. During a process context switch, LDT selector
information within the kernel process environment block (KPEB) is poked into this selector
to set the appropriate base address and limit.

LDT (Local Descriptor Table)

Under Windows NT, Local Descriptor Tables are per process data structures and are only used
for Virtual DOS Machines (VDM). The 16-bit WOW box (Windows On Windows) is
executed within a NTVDM process and has an LDT. Like Windows 3.1, the LDT for a
WOW contains the selectors for every 16-bit protected mode code and data segment for each
16-bit application or DLL that is loaded. It also contains the selectors for each task database,
module database, local heaps, global allocations, and all USER and GDI objects that require
the creation of a selector. Under a WOW, because the number of selectors needed can be quite
large, a full LDT is created with a majority of the entries initially reserved. These reserved
selectors are allocated as needed. Under a non-WOW VDM, the size of the LDT is
significantly smaller.

0043 Data16 Base=00000400 Lim=0000FFFF DPL=3 P RW

0048 LDT Base=E156C000 Lim=0000FFEF DPL=0 P

0050 TSS32 Base=80143FE0 Lim=00000068 DPL=0 P

0058 TSS32 Base=80144048 Lim=00000068 DPL=0 P
176 Using SoftICE

Inside the Windows NT Kernel
Windows NT System Memory Map

Windows NT reserves the upper 2GB of the linear address space for system use. The address
range 0x80000000 - 0xFFFFFFFF maps system components such as device drivers, system
tables, system memory pools, and system data structures such as threads and processes. While
you cannot create an exact map of the Windows NT system memory space, you can
categorize areas that are set aside for specific usage. The following System Memory Map
diagram gives you a rough idea of where operating system information is located. Remember
that a majority of these system areas could be mapped anywhere within the system address
space, but are generally in the address ranges shown.

• System Code area

Boot drivers and the NTOSKRNL and HAL components are loaded in the System Code
address space. Non-boot drivers are loaded in the NonPaged system address space near
the top of the linear address space. You can use the SoftICE MOD and MAP32
commands to examine the base address and extents of boot drivers loaded in this
memory area. This is also where the TSS, IDT, and GDT system data structures are
mapped.

Note: LDT data structures are created from the Paged Pool area.

• System View area

The System View address space is symbolically referenced, but does not ever seem to be
mapped under Windows NT 3.51. Under newer versions of Windows NT, the System
View address space maps the global tables for GDI and USER objects. You can use the
SoftICE OBJTAB command to view information about the USER object table.

• System Tables area

This region of linear memory maps process page tables and related data structures. This is
one of the few areas of system memory that is not truly global, in that each process has
unique page tables. When Windows NT executes a process context switch, the physical
address of the process Page Directory is extracted from the kernel process environment
block (KPEB) and loaded into the CR3 register. This causes the process page tables to be
mapped in this memory area. Although the linear addresses remain the same, the physical
memory used to back this area contains process-specific values. In SoftICE terminology,
the Page Directory is essentially an Address Context. When you use the SoftICE ADDR
command to change to a specific process context, you are loading the Page Directory
information for this process.
Using SoftICE 177

Exploring Windows NT
The following diagram shows the system memory map for Windows NT.
S

ys
te

m
 V

ie
w

 S
pa

ce
0x

A
00

00
00

0
-

0x
B

F
F

F
F

F
F

F

B
oo

t D
riv

er
s

M
or

e
B

oo
t D

riv
er

s

N
T

O
S

K
R

N
L

H
A

L

G
D

T

T
S

S

ID
T

W
in

32
 U

S
E

R
O

bj
ec

t T
ab

le

W
in

32
 G

D
I

O
bj

ec
t T

ab
le

N
ot

 M
ap

pe
d

U
nd

er
 W

in
do

w
s

3.
51

P
ag

e
T

ab
le

M
ap

pi
ng

 A
re

a

S
ys

te
m

 P
T

E
T

ab
le

P
ag

e
D

ire
ct

or
y

M
ap

pi
ng

 A
re

a

S
ys

te
m

 C
ac

he
P

T
E

 ta
bl

e

S
ys

te
m

 C
ac

he
W

or
ki

ng
 S

et
Li

st
B

oo
t D

riv
er

s

P
ag

ea
bl

e
P

oo
l #

1

P
ag

ea
bl

e
P

oo
l

#n

P
ag

ea
bl

e
P

oo
l #

2

W
in

do
w

s
N

T
C

ac
he

 M
an

ag
er

M
ap

pi
ng

 A
re

a

S
ys

te
m

 D
riv

er
s

M
an

ua
l D

riv
er

s

A
ut

om
at

ic
D

riv
er

s

K
er

ne
l T

hr
ea

d
S

ta
ck

s

S
ys

te
m

 P
ag

e
P

T
E

 T
ab

le

N
on

P
ag

ea
bl

e
P

oo
l

P
ag

ef
ra

m
e

D
at

ab
as

e

N
on

P
ag

ea
bl

e
P

oo
l (

M
us

t
S

uc
ce

ed
)

P
ro

ce
ss

or
 C

on
tr

ol
R

eg
io

n

P
ro

ce
ss

or
 C

on
tr

ol
B

lo
ck

(P
ro

ce
ss

or
 #

1)

P
ro

ce
ss

or
 C

on
tr

ol
B

lo
ck

(P
ro

ce
ss

or
 #

2)

P
ro

ce
ss

or
 C

on
tr

ol
B

lo
ck

(P
ro

ce
ss

or
 #

n)

S
ys

te
m

 C
od

e
0x

80
00

00
00

 -
0x

9F
F

F
F

F
F

F

S
ys

te
m

 T
ab

le
s

0x
C

00
00

00
0

-
0x

C
0F

F
F

F
F

F

S
ys

te
m

 C
ac

he
0x

C
10

00
00

0
-

0x
D

8F
F

F
F

F
F

P
ag

ed
 P

oo
l

0x
E

10
00

00
0

-
0x

E
57

F
F

F
F

F

N
on

P
ag

ed
 S

ys
te

m
0x

F
B

00
00

00
 -

0x
F

F
D

F
E

F
F

F

P
ro

ce
ss

or
 C

on
tr

ol
0x

F
F

D
F

F
00

0
-

0x
F

F
F

F
F

F
F

F

178 Using SoftICE

Inside the Windows NT Kernel
To manage the mapping of linear memory to physical memory, Windows NT reserves a
4MB region of the system linear address space for Page Tables. This 4MB region
represents the entire range of memory necessary to fully define a Page Directory and
complete set of page tables. The need for a 4MB region can be calculated given that there
is one Page Directory structure which contains entries for 1024 Page Tables. To map a
4GB linear address space, each Page Table must map a 4MB region of linear address space
(4GB /1024). Each Page Table is a multiple of the CPU page size (which is 4KB under
Windows NT), so multiplying 1024 by 4096 (the page size) yields the expected 4MB
value. Thus an operating system that uses paging and a 4KB page size requires 4MB of
memory to map the entire address space. Both Windows NT and Windows 95 take the
simple and efficient approach of using a contiguous region of linear memory for this
purpose.

In this scheme, the Page Directory is actually performing two functions. In addition to
being the Page Directory, representing 4GB, it also serves as a page table, representing
4MB in the address range 0xC0000000 - 0xC03FFFFF. The Page Directory maps the
4MB region where the process page tables are mapped (0xC0000000-0xC03FFFFF), so
the Page Directory entry that maps this area must point to itself. If you use the SoftICE
PAGE command, the physical address of the Page Directory displayed at the top of the
command output matches the physical address for the entry that maps the 0xC0000000
- 0xC03FFFFF memory range. If you use the SoftICE ADDR command to obtain the
CR3 (the CR3 register contains the physical address of the Page Directory) value for the
current process and supply this value as input to the SoftICE PHYS command, all the
linear addresses that are mapped to the physical address of the Page Directory are
displayed. One of the addresses is 0xC0300000.
Using SoftICE 179

Exploring Windows NT
The following examples illustrates how all these values interrelate. Important values are
show in bold typeface.

à Use the ADDR command to obtain the physical address of the Page Directory (CR3).

à Use the physical address as input to the PHYS command to obtain all linear addresses
that map to that physical page (one physical page may be mapped to more than one
linear address, and one linear address may be mapped to more than one page).

:phys 1F6E000

C0300000

à Use the linear address (C0300000) and run it through the PAGE command to verify
the physical page for that linear address.

:page C0300000

Linear Physical Attributes

C0300000 01F6E000P D A S RW

:addr

CR3 LDT Base:Limit KPEB Addr PID Name

00030000 FF116020 0002 System

0115A000 FF0AAA80 0051 RpcSs

0073B000 FF083020 004E nddeagnt

00653000 E13BB000:0C3F FF080020 0061 ntvdm

00AEE000 FF07A600 0069 Explorer

01084000 FF06ECA0 0077 FINDFAST

010E9000 FF06CDE0 007B MSOFFICE

*01F6E000 FF088C60 006A WINWORD

01E0A000 FF09CCA0 008B 4NT

017D3000 E1541000:018F FF09C560 006D ntvdm

00030000 80140BA0 0000 Idle
180 Using SoftICE

Inside the Windows NT Kernel
à Use the PAGE command without any parameters to view the mapping of the entire
linear address range. This is useful for obtaining the physical address of the Page
Directory and verifying that the operating system page tables are mapped at linear
address 0xC0000000. The output for this command is abbreviated.

System Page Table Entries and ProtoPTEs

The acronym, PTE, which appears in various places on the system map, stands for Page
Table Entry. A Page Table Entry is one of the 1024 entries that is contained in a Page
Table. Each PTE describes one page of memory, including its physical address and
attributes. Because Windows NT also runs on non-Intel platforms, and because the
operating system may need to extend the types of page-level protection beyond what any
particular CPU may provide, Windows NT virtualizes the CPU PTE with what is
referred to as a ProtoPTE. The ProtoPTE is similar to the Intel Architecture PTE, but
includes attributes that are not provided by the Intel PTE. By overloading the meaning of
an attribute bit within an Intel PTE, the operating system can gain control on a page
fault, and examine the extended attributes of the corresponding ProtoPTE to determine
why the operating system requested that the fault occur. Throughout NTOSKRNL,
manipulations are performed on the ProtoPTE abstraction, and translated to the actual
CPU PTE type. Note that the operating system also compares the ProtoPTE to its
corresponding CPU PTE to ensure their consistency. This effectively prevents an
application or device driver from directly manipulating the page table entries.

:page

Page Directory Physical=01F6E000

Physical Attributes Linear Address Range

01358000 P A S RW A0000000 - A03FFFFF

017F0000 P A S RW A0400000 - A07FFFFF

01727000 P A S RW A0800000 - A0BFFFFF

01F6E000 P A S RW C0000000 - C03FFFFF

0066F000 P A S RW C0400000 - C07FFFFF

00041000 P A S RW C0C00000 - C0FFFFFF

00042000 P A S RW C1000000 - C13FFFFF
Using SoftICE 181

Exploring Windows NT
• Paged Pool area

The Paged Pool system memory area is where ntoskrnl!ExAllocatePool and its related
functions allocate memory that can be paged to disk. This is in direct contrast to the
NonPaged pool area. NonPaged pool allocations are never paged to disk and are designed
for routines such as Interrupt Handlers that need high performance or need a guarantee
that a piece of information is always available for use.

Windows NT makes extensive use of the Paged pools, as this is where most operating
system objects are created. Note that the starting address and the size and number of
paged pools is determined dynamically during system initialization. Only use the
addresses presented here as a guideline. For the actual addresses, load the symbols for
NTOSKRNL and examine the appropriate variables that describe the paged pool
configuration. (To see several of them, use the SoftICE SYM command with the
Parameter “MmPaged*”.)

Although there is one Paged Pool area, there are multiple paged pools. The number is
determined during system initialization. Paged pool allocations occur with relatively high
frequency and those accesses must be thread safe, so having one data structure which
must be owned exclusively by one thread during memory allocation or deallocation
creates a bottleneck. To avoid potential traffic jams and reduced system performance,
multiple pool descriptors are created, each with its own private data structures, including
an executive spinlock for thread synchronization. Thus, the more paged pools created,
the more threads that can perform paged pool allocations simultaneously, increasing the
throughput of the system. An important design note, in case you plan on using similar
techniques in your driver or application, is that the overhead for a Paged Pool (or
NonPaged Pool) descriptor is very minimal. Thus its practical for four or five of them to
exist. However, determine that an actual bottleneck exists before creating elaborate
schemes to solve a non-existent problem.

• NonPaged System area

This linear region is intended for system components and data structures that need to be
present in memory at all times. This includes non-boot drivers, kernel mode thread
stacks, two NonPaged memory pools, and the Page Frame Database. Although it is
contradictory to say that items in the NonPaged System area can become not present; the
truth is that they can be. Specifically, kernel thread stacks and process address spaces can
be made not present, and often are.

The NonPaged pool is similar to the Paged Pool with the exception that objects created
in the NonPaged pool are not discarded from memory for any reason. The NonPaged
pool is used to allocate key system data structures such as kernel process and thread
environment blocks. There is a second NonPaged pool used for memory allocations that
must succeed. At system initialization, NTOSKRNL reserves a small amount of physical
memory for critical allocations, and saves this memory for use by the must succeed pool.
The size of an allocation from the must succeed pool must be less than one page (4KB).
If the must succeed allocation cannot be satisfied, or the requested allocation size is larger
than 4KB, the system throws a Blue Screen.
182 Using SoftICE

Inside the Windows NT Kernel
• Processor Control Region

At the high end of the system memory area is the Processor Control Region. Here,
Windows NT maintains Processor Control Block (PCRB) data structures for each
processor within the system and a global data structure, the Processor Control Region
that reflects the current state of the system. The Processor Control Region (PCR)
contains key pieces of information about the current state of the system, such as the
currently running kernel thread; the current interrupt request level (IRQL); the current
exception frame; base addresses of the IDT, TSS, and GDT; and kernel thread stack
pointers. Small portions of the PCR and PCRB data structures are documented in
NTDDK.H.

In many cases, device driver writers need to know the current IRQL at which they are
executing. Although you could look inside the PCR data structure at offset 0x24, it is
simpler to use the SoftICE intrinsic function, IRQL, as follows:

? IRQL

00000002h

The most common piece of data accessed from the PCRB is the current kernel thread
pointer. This is at offset 4 within the PCRB, but is generally referenced through the PCR
at offset 0x124. This works because the PCRB is nested within the PCR at offset 0x120.
Code that accesses the current thread is usually of the form:

mov reg, FS:[124].

Remember that while executing in system mode, the FS register is set to a GDT selector
whose base address points to the beginning of the PCR. SoftICE makes it much easier to
get the current thread pointer or thread id by using the intrinsic functions thread or tid:

? thread

FF088E90h

? tid
71h
Using SoftICE 183

Exploring Windows NT
For more extensive information on the current thread use the following commands:

The current process is not stored as part of the PCR or PCRB. Windows NT references
the current process through the current thread. Code such as the following obtains the
current process pointer:

Win32 Subsystem

Inside CSRSS

The Win32 subsystem server process CSRSS implements the Win32 API. The Win32 API
provides many different types of service, including functionality traditionally attributed to the
original Windows components KERNEL, USER, and GDI. Although these standard
modules exist in the form of 32-bit DLLs under Windows NT 3.51, and to a lesser degree
under new versions of the operating system, most of the core functionality is actually
implemented in WINSRV.DLL within the CSRSS process. Calls that are traditionally
associated with one of the standard Windows components are typically implemented as stubs
that call other modules, for example, NTDLL.DLL, or use inter-process communication to
CSRSS for servicing.

Most USER and GDI API calls are routed through the appropriate 32-bit module in the
process address space. There, they are packaged as Local Procedure Call (LPC) messages and
routed to CSRSS for processing. As you might imagine, this LPC mechanism, although much
more optimized than a true Remote Procedure Call (RPC), has much more overhead than a
simple function call. It is surprising to think that every time your application calls the
IsWindow function in USER32.DLL, it must be packaged for LPC and sent as a subsystem
message to CSRSS. For CSRSS to be able to process this message, a process switch must occur
and a worker thread must be awoken and dispatched. The specific service must be

:thread tid

TID Krnl TEB StackBtm StkTop StackPtr User TEB Process(Id)

0071 FF0889E0 FC42A000 FC430000 FC42FE5C 7FFDE000 WINWORD(6A)

:thread thread

TID Krnl TEB StackBtm StkTop StackPtr User TEB Process(Id)

0071 FF0889E0 FC42A000 FC430000 FC42FE5C 7FFDE000 WINWORD(6A)

mov eax, FS:[124] ; get the current thread (KTEB)

mov esi, [eax+40h] ; get the threads process pointer (KPEB)
184 Using SoftICE

Win32 Subsystem
determined, parameters must be validated, and finally the service must be executed. When
everything is complete on the CSRSS side, a LPC reply must be made to the client (your
application), which involves another process switch and unpackaging of the LPC reply.
Whew! All that just to determine if a handle represents a valid window.

In their design of a forthcoming version of Windows NT, Microsoft is working to remove as
much of this overhead as possible. First, they are moving much of the functionality of
WINSRV.DLL into the actual USER32 and GDI32 modules that are loaded into your
application’s address space. This allows the most common services to execute as simple
function calls; no LPC is necessary. Second, rather than making a context switch into CSRSS
to access functionality in WINSRV.DLL, a new system driver, WIN32K.SYS allows USER
and GDI services to execute more efficiently through a simple transition from user to system
mode. Having WIN32K.SYS as a device driver that provides application services allows
Windows NT to maintain a high level of encapsulation and robustness, while providing a
much more efficient pseudo client-server service architecture.

Although CSRSS executes as a separate process, it still has a big impact on the address space of
every Win32 application. If you use the SoftICE HEAP32 command on your process, you
will notice at least two heaps that your application did not specifically create, but were created
on its behalf. The first is the default process heap that was created during process
initialization. The second is a heap specifically created by CSRSS. There may be other heaps
in your application address space that were not created by your process. These heaps are
generally located very high in the user-mode address space and appear if you use the SoftICE
QUERY command, but do not appear in the output of the HEAP32 command. The reason
for this is quite simple: for each user-mode process, a list of process heaps is maintained and
the SoftICE HEAP32 command uses this list to enumerate the heaps for a process. If the heap
was not created by or on behalf of your application, it does not appear in the process heap list.
The SoftICE QUERY command traverses the user-mode address space for your application,
using the SoftICE WHAT engine to identify regions of memory that are mapped. When the
WHAT engine encounters a region whose base address is equivalent to a heap that is listed as
part of the process heap list, it is identified as a heap. If the WHAT engine cannot identify a
region as a heap in this manner, it probes the data area looking for key signatures that identify
the area as heap or heap segment.

Heaps that exist in the process address space, but that are not enumerated in the process heap
list, were mapped into the process address space by another process. In most cases, this
mapping is done by CSRSS. During subsystem initialization, CSRSS creates a heap at a well-
known base address. When new processes are created, this heap is mapped into their address
spaces at the same well-known base address. Theoretically, mapping the heap of one process at
the same base address of another process allows both processes to use that heap. In practice,
there are issues that might prevent this from working under all circumstances –
synchronization being one such issue. Note that under newer versions of Windows NT, more
than one heap may be mapped into the process address space, and those heaps may be
mapped at different base addresses in different processes. The SoftICE QUERY command
notes this condition in its output. Also, new versions of the operating system use heaps that
Using SoftICE 185

Exploring Windows NT
are created in the system address space, and these heaps are sometimes mapped into the user
address space. Windows NT allows the creation of heaps within the system address space
using APIs exported from NTOSKRNL. These APIs are similar to the same APIs exported
from the user-mode module, NTDLL.DLL.

USER and GDI Objects

Under Windows NT 3.51, the protected Win32 subsystem process, CSRSS, provides a
majority of the traditional USER functionality. APIs and data structures provided by the
WINSRV.DLL module manage window classes, and window data structures, as well as many
other USER data types.

Under Windows NT 3.51, the following USER object types exist. Object type IDs are listed
in parentheses.

FREE (0) Object Entry is unused/invalid.

HWND (1) Window Objects.

MENU (2) Windows MENU object.

ICON/CURSOR (3) Windows ICON or CURSOR object.

DEFERWINDOWPOS (4) Object returned by the
BeginDeferWindowPosition API.

HOOK (5) Windows Hook thunk.

THREADINFO (6) CSRSS Client Thread Instance Data.

QUEUE (7) Windows message queue.

CPD (8) Call Procedure Data thunk.

ACCELERATOR (9) Accelerator Table Object.

WINDOW STATION (0xA)

DESKTOP (0xB) Object representing a desktop window hierarchy.

DDEOBJECT (0xC) DDE Objects such as strings.
186 Using SoftICE

Win32 Subsystem
Newer versions of Window NT add/redefine the following USER object types.

Rather than maintaining per-process data structures for USER and GDI object types, CSRSS
maintains a master handle table for all processes. The USER and GDI objects are segregated
into two different tables that have the same basic structure and semantics. WINSRV provides
distinct Handle Manager APIs for managing the two different tables. You can identify the
handle manager API names by the HM prefix in front of the API name, and the GDI specific
routines by the “g” appended to this prefix. The routine HMAllocObject creates USER object
types, while HmgAlloc is a GDI object type API that creates GDI object types.

The management of USER and GDI handles is relatively straightforward, and its design is a
good example of how to implement basic management of abstract object types. Specifically,
this API uses a simple, but robust, technique for creating unique handles and managing
reference counts. The design also provides for handle opaqueness which prevents applications,
including USER32 and CSRSS, from directly manipulating the objects outside the handle
manager. Preventing clients, including itself, from directly manipulating the object data allows
the handle manager to ensure that reference counts and synchronization issues are managed
correctly.

The master object tables maintained by the Handle Manager are growable arrays of fixed size
entries. The following table lists the fields for an object table. Only columns with bold field
headers are part of the entry. The columns with italicized headers are for illustration only.

DESKTOP (---) This Object type has been removed. This type is
now a kernel object that is managed by the
Kernel Object Manager.

QUEUE (---) This Object type has been removed.

WINDOW STATION (0xD) Changed Object type ID. Also exists as a kernel
object.

DDEOBJECT (0xA) Changed Object type ID.

KEYBOARD LAYOUT (0xE) New Object type. Object to describe a keyboard
layout.

CLIPBOARD FORMAT (7) New Object type. Registered Clipboard Formats.

Entry
Object
Pointer
(DWORD)

Owner
(DWORD)

Type
(BYTE)

Flags
(BYTE)

Instance
Count
(WORD)

Handle Value

0 NULL NULL FREE (0) 00 0001 00010000

1 HEAP * HEAP * DESKTOP (0C) 00 0001 00010001

2 HEAP * HEAP * HWND (04) 01 0003 00030002
Using SoftICE 187

Exploring Windows NT
The Object Pointer field points to the actual object data. This pointer is generally from one of
the CSRSS heaps or the Paged Pool. The type field is the enumeration for the object type. The
Instance Count field creates unique handles. The Flags field is used by the Handle Manager to
note special conditions, such as when a thread locks an object for exclusive use.

How Handle Values Are Created

Initially, all object table Instance counts are set to 1. When a new Object Entry is allocated,
the Instance Count is combined with the table index to create a unique handle value. When
references are made to an object, the table entry portion of the handle is extracted and used to
index into the table. As part of the handle validation, the instance count is extracted from the
table entry and compared to the handle being validated. If the instance count does not match
the table entry instance count, the handle is bogus. The following example illustrates these
concepts:

To create an object handle from an object table entry:

Object Handle = Table Entry Index + (InstanceCount << 16);

To validate an object handle:

ObjectTable [LOWORD(handle)]. InstanceCount == HIWORD(handle);

When an object is destroyed, all fields are reinitialized to zero and the current Instance Count
for that entry is incremented by one. Thus, when the object table entry is reused, it generates
a different handle value for the new object.

Note: The actual object type is not part of the object handle value. This means that given an
object handle, an application cannot directly determine its type. It is necessary to
dereference the object table entry to obtain the object type.

This technique for creating unique handle values is simple and efficient, and makes validation
trivial. Imagine the case where a process creates a window and obtains a handle to that
window. During subsequent program execution, the process destroys the window but retains
the handle value. If the process uses the handle after the window is destroyed, the handle value
is invalid and the type it points to has an object type of FREE. This condition is caught, and
the program is not be able to use the handle successfully. In the meantime, if another process
creates a new object, it is likely that the entry originally for the now destroyed window will be
reused. If the original program uses the invalid window handle, the handle instance counts no
longer match, and the validation fails.

Object tables are not process specific, so USER and GDI object handles values are not unique
to a specific process. HWND handles are unique across the entire Win32 subsystem. One
process never has an HWND handle value that is duplicated in any other process.
188 Using SoftICE

Win32 Subsystem
USER Object Table

Use the SoftICE OBJTAB command to display all the object entries within the USER object
table. The OBJTAB command is relatively flexible, allowing a handle or table entry index to
be specified. It also supports the display of objects by type using abbreviations for the object
type names. To see a list of object type names that the OBJTAB command can use, specify the
-H option on the OBJTAB command line.

The Object Pointer field can reference the object specific data for an object table entry. All
objects have a generic header that is maintained by the object manager, which includes the
object handle value and a thread reference count. Most object types also contain a pointer to a
desktop object and/or a pointer to its owner.

The following example shows an object table entry for a window handle and a data dump of
the object header maintained by the handle manager. Key information from the command
output is listed in bold.

1 Use the SoftICE OBJTAB command to find an arbitrary window handle and obtain the
object pointer. In this example, the handle value is 0x1000C and the owner field is
0xE12E7008:

2 Dumping 0x20 bytes of the object data reveals the following:

The value 0x1001C, at offset 0, is the object handle value. The field at offset 4, which
contains the value six (6), is the object reference count. The value at offset 0x0C, of
0xFF0E45D8, is a pointer to the window’s desktop object.

3 Verify this using the SoftICE WHAT command as follows:

:what ff0e45d8
The value FF0E45D8 is (a) Kernel Desktop object (handle=0068) for
winlogon(21)

The value at offset 0x14, of 0xE12E7008, is the same value that was in the object entry
owner field.

:objtab hwnd

Object Type Id Handle Owner Flags

E12E9EA8 Hwnd 01 0001001C E12E7008 00

:dd e12e9ea8 l 20

0010:E12E9EA
8

0001001C 00000006 00000000 FF0E45D8

0010:E12E9EB
8

00000000 E12E7008 00000000 00000000
Using SoftICE 189

Exploring Windows NT
4 Dumping 0x20 bytes at the address of the owner data reveals the following:

5 The value (0x1001B) at offset 0 of the owner data looks like an object handle, but it is a
thread information object. The following example uses the OBJTAB command with
0x1001B as the parameter to show the type for the owner data.

Monitoring USER Object Creation

If you do a considerable amount of Win32 application development, the HMAllocObject
API is a convenient place to monitor creation of object types such as windows. Use the
SoftICE MACRO command to create a breakpoint template that can trap creation of specific
object types as follows:

:MACRO obx = “bpx winsrv!HMAllocObject if (esp->c == %1)”

The HMAllocObject API is implemented in WINSRV.DLL and the object type being created
is the third parameter, which translates to Dword ptr esp [0Ch]. The syntax “esp->c”
dereferences the requested object type, and is equivalent to *(esp+c). The “%1” portion of the
conditional expression is a place holder for argument replacement. When you execute the
OBX macro, the argument provided is inserted into the macro stream at the “%1”:

:OBX 1 -> bpx winsrv!HMAllocObject if (esp->c == 1)

When this breakpoint is instantiated, it traps all calls to HMAllocObject that creates window
object types.

:dd e12e7008 l 20

0010:E12E700
8

0001001B 00000000 00000000 E12E9C34

0010:E12E701
8

E17DB714 00000000 00000000 00000000

:objtab 1001b

Object Type Id Handle Owner Flags

E12E7008 Thread Info 06 0001001B 00000000 00
190 Using SoftICE

Win32 Subsystem
Process Address Space

The address space for a user-mode process is mapped into the lower 2GB of linear memory at
addresses 0x00000000 - 0x7FFFFFFF. The upper 2GB of linear memory is reserved for the
operating system kernel and device drivers.

In general, each Win32 application’s process address space has the following regions of linear
memory mapped for the corresponding purpose.

Under Windows NT, the lowest and highest 64KB regions in the user-mode address space are
reserved and are never mapped to physical memory. The 64KB at the bottom of the linear
address space is designed to help catch writes through NULL pointers.

The default load address for processes under Windows NT is 0x10000. Processes often
change their load address to a different base address. Applications that were designed to run
under Windows 95 have a default load address of 0x400000. Use the linker or the REBASE
utility to set the default load address of a DLL or EXE.

The linear range at 0x70000000 is an approximation of the area where Win32 subsystem
modules load. Use the SoftICE MOD, MAP32, or QUERY commands to obtain
information on modules loaded in this range.

The user process environment block is always mapped at 0x7FFDF000, while the process’s
primary user-mode thread environment block is one page below that at 0x7FFDE000. As a
process creates other worker threads, they are mapped on page boundaries at the current,
highest unused linear address.

Linear Address Range Purpose

0x00000000 - 0x0000FFFF Protected region. Useful for detecting NULL pointer
writes.

0x00010000 Default load address for Win32 processes.

0x70000000 - 0x78000000 Typical range for Win32 subsystem DLLs to be loaded.

0x7FFB0000 - 0x7FFD3FFF ANSI and OEM code pages. Unicode translation
table(s).

0x7FFDE000 - 0x7FFDEFFF Primary user-mode thread environment block.

0x7FFDF000 - 0x7FFDFFFF User-mode process environment block (UPEB).

0x7FFE0000 - 0x7FFE0FFF Message queue region.

0x7FFFF000 - 0x7FFFFFFF Protected region.
Using SoftICE 191

Exploring Windows NT
The following use of the SoftICE THREAD command shows how each subsequent thread is
placed one page below the previous thread:

To find out more about the user-mode address space of a process, use the SoftICE QUERY
command. The QUERY command provides a high-level view of the linear regions that were
reserved and/or committed. It uses the SoftICE WHAT engine to identify the contents of a
linear range. From its output you see the process heaps, modules, and memory-mapped files,
as well as the thread stacks and thread environment blocks.

Heap API

Heap Architecture

Every user-mode application directly or indirectly uses the Heap API routines, which are
exported from KERNEL32 and NTDLL. Heaps are designed to manage large areas of linear
memory and sub-allocate smaller memory blocks from within this region. The core
implementation of the Heap API routine is contained within NTDLL, but some of the
application interfaces such as HeapCreate and HeapValidate are exported from KERNEL32.
For some API routines, such as HeapFree, there is no code implementation within
KERNEL32, so they are fixed by the loader to point at the actual implementation within
NTDLL.

Note: The technique of fixing an export in one module to the export of another module is
called ‘Snapping.’

Although the Heap API routines used by applications are relatively straightforward and
designed for ease of use, the implementation and data structures underneath are quite
sophisticated. The management of heap memory has come quite a long way from the
standard C run-time library routines malloc() and free(). Specifically, the Heap API handles
allocations of large, non-contiguous regions of linear memory, which are used for sub-
allocation and to optimize coalescing of adjacent blocks of free memory. The Heap API also
performs fast look-ups of best-fit block sizes to satisfy allocation requests, provides thread-safe
synchronization, and supplies extensive heap information and debugging support.

The primary heap data structure is large, at approximately 1400 bytes, for a free build and
twice that for a checked build. This does not include the size of other data structures that help
manage linear address regions. A vast majority of this overhead is attributed to 128 doubly-
linked list nodes that manage free block chains. Small blocks, less than 1KB in size, are stored

:thread winword

TID Krnl TEB StackBtm StkTop StackPtr User TEB Process(Id)

006B FFA7FDA0 FEAD7000 FEADB000 FEADAE64 7FFDE000 WINWORD(83)

007C FF0A0AE0 FEC2A000 FEC2D000 FEC2CE18 7FFDD000 WINWORD(83)

009C FF04E4E0 FC8F9000 FC8FC000 FC8FBE18 7FFDC000 WINWORD(83)
192 Using SoftICE

Win32 Subsystem
with other blocks of the same size in doubly linked lists. This makes finding a best-fit block
very fast. Blocks larger than 1KB are stored in one sorted, doubly-linked list. This is an
obvious example of a time versus space trade-off, which could be important to the
performance of your application.

To understand the design and implementation of the Heap API, it is important to realize that
a Win32 heap is not necessarily composed of one section of contiguous linear memory. For
growable heaps, it might be necessary to allocate many linear regions, using VirtualAlloc,
which will generally be non-contiguous. Special data structures track all the linear address
regions that comprise the heap. These data structures are call Heap Segments. Another
important aspect of the Heap API design is the use of the two-stage process of reserving and
committing virtual memory that is provided by the VirtualAlloc and related APIs. Managing
which memory is reserved and which memory is committed requires special data structures
known as Uncommitted Range Tables, or UCRs for short.

The Ntdll!RtlCreateHeap() API implements heap creation and initialization. This routine
allocates the initial virtual region where the heap resides and builds the appropriate data
structures within the heap. The heap data structure and Heap Segment #1 reside within the
initial 4KB (one page) of the virtual memory that is initially allocated for the heap. Heap
Segment #1 resides just beyond the heap header. Heap Segment #1 is initialized to manage
the initial virtual memory allocated for the heap. Any committed memory beyond Heap
Segment #1 is immediately available for allocation through HeapAlloc(). If any memory
within Heap Segment #1is reserved, a UCR table entry is used to track the uncommitted
range.

Note: Kernel32!HeapAlloc() is ‘Snapped’ to Ntdll!RtlAllocateHeap.

Besides the 128 free lists mentioned above, the heap header data structure contains 8 UCR
table entries, which should be sufficient for small heaps, although as many UCRs as are
necessary can be created. It also contains a table for sixteen (16) Heap Segment pointers. A
heap can never have more than sixteen segments, as no provision is made for allocating extra
segments entries. If the heap requires thread synchronization, the heap header appends a
critical section data structure to the end of the fixed size portion of the heap header preceding
Heap Segment #1.

The following diagram is a high-level illustration of how a typical heap is constructed, and
how the most important pieces relate to each other.
Using SoftICE 193

Exploring Windows NT
The left side of the diagram represents a region of virtual memory that is allocated for the
heap. The heap header appears at the beginning of the allocated memory and is followed by
Heap Segment #1. The first entry within the heap’s segment table points to this data structure.
Committed memory immediately follows Heap Segment #1. This memory is initially marked
as a free block. When an allocation request is made, assuming this block of memory is large
enough, a portion is used to satisfy the allocation and the remainder continues to be marked
as a free block. Beyond the committed region is an area of memory that is reserved for future
use. When an allocation request requires more memory than is currently committed, a
portion of this area is committed to satisfy the request.

Heap Segment #1 tracks the virtual memory region initially allocated for the heap. The
starting address for the heap segment equals to the base address of the heap and the end range
points to the end of the allocated memory. A portion of the heap in the diagram is in a
reserved state, that is, it has not been committed, so the heap segment uses an available UCR
entry to track the area. When memory must be committed to satisfy an allocation request, all

UCR Table

Linear
Memory

Heap Segment #2

Committed Heap Memory

Reserved Heap Memory

UCR Entry

UCR Entry

UCR Entry

UCR Entry

UCR Entry

Segment #1

Segment #2

Heap Segment #1

Committed Heap Memory

Reserved Heap Memory

Heap Header

Linear
Memory
194 Using SoftICE

Win32 Subsystem
UCR entries maintained by a particular segment are examined to determine if the size of the
uncommitted range is large enough to satisfy the allocation. To increase performance, the
heap segment tracks the largest available UCR range and the total number of uncommitted
pages within the virtual memory region of the heap segment.

On the right side of the diagram, a second area of virtual memory was allocated and is
managed by Heap Segment #2. Additional heap segments are created when an allocation
request exceeds the size of the largest uncommitted range within the existing segment. This is
only true if the size of the requested allocation is less than the heap’s VMthreshold. When the
requested allocation size exceeds the VMThreshold, the heap block is directly allocated
through VirtualAlloc and a new heap segment is not created.

As mentioned previously, a small number of UCR entries are provided within the heap
header. For illustration purposes, this diagram shows a UCR TABLE entry that was allocated
specifically to increase the number of UCR entries that are available. The need to create an
extra UCR table is generally rare, and is usually a sign that a large number of segments were
created or that the heap segments are fragmented.

Fragmentation of virtual memory can occur when the Heap API begins decommitting
memory during the coalescing of free blocks. Decommitting memory is the term used to
describe reverting memory from a committed state to a reserved or uncommitted state. When
a free block spans more than one physical page (4k), that page becomes a candidate for being
decommitted. If certain decommit threshold values are satisfied, the Heap manager begins
decommitting free pages. When those pages are not contiguous with an existing uncommitted
range, a new UCR entry must be used to track the range.

The following examples use the SoftICE HEAP32 command to examine the default heap for
the Explorer process.

1 Use the -S option of the HEAP32 command to display segment information for the
default heap:

:heap32 -s 140000

Base Id Cmmt/Psnt/Rsvd Segments Flags Process

00140000 01 001C/0018/00E4 1 00000002 Explorer

01 00140000-00240000 001C/0018/00E4 E4000

Heap segment memory range
Largest UCR

Heap segment count
Using SoftICE 195

Exploring Windows NT
2 Use the -X option of the HEAP32 command to display extended information about the
default heap:

3 Use the -B option of the HEAP32 command to display the base addresses of heap blocks
within the default heap:

In the above output, you can see how the heap header is followed by Heap Segment #1
and that the first allocated block is just beyond the Heap Segment data structure.

Managing Heap Blocks

As discussed in the preceding section, the Heap API uses the Win32 Virtual Memory API
routines to allocate large regions of the linear address space and uses heap segments to manage
committed and uncommitted ranges. The actual sub-allocation engine that manages the
allocation and deallocation of the memory blocks used by your application is built on top of
this functionality.

To track allocated and free blocks, the Heap API creates a header for each block. The
following diagram illustrates how the heap manager tracks blocks of contiguous memory. The
heap manager also tracks non-contiguous free blocks in doubly-linked lists, but the node
pointers for the next and previous links are not stored in the block header. Instead, the heap
manager uses the first two Dwords within the heap block memory area.

:heap32 -b 140000

Base Type Size Seg# Flags

00140000 HEAP 580 01

00140580 SEGMENT 38 01

001405B8 ALLOC 30 01

:heap32 -x 140000

Extended Heap Summary for heap 00140000 in Explorer

Heap Base: 140000 Heap Id: 1 Process: Explorer

Total Free: 6238 Alignment: 8 Log Mask: 10000

Seg Reserve: 100000 Seg Commit: 2000

Committed: 112k Present: 96k Reserved: 912k

Flags: GROWABLE

DeCommit: 1000 Total DeC: 10000 VM Alloc: 7F000

Default size for commits VM thresholdDefault size of a heap segment
196 Using SoftICE

Win32 Subsystem
As shown in the preceding diagram, each block stores its unit size as well as the unit size of the
previous block. The unit size represents the number of heap units occupied by the heap block.
The previous unit size is the number of heap units occupied by the previous heap block.
Using these two values, the heap manager is able to walk contiguous heap blocks.

Heap units represent the base granularity of allocations made from a heap. The size of an
allocation request is rounded upwards as necessary, so that it is an even multiple of this
granularity. Rather than using a granularity of 1 byte, the heap manager uses a granularity of 8
bytes. This means that all allocations are an even multiple of 8 bytes, and that allocation sizes
can be converted to units by round up and dividing by 8.

For example, if a process requests an allocation of 32 bytes, the number of units is 32 / 8 = 4.
If the allocation request was 34 bytes, the allocation size is rounded upward to an even
multiple of 8. In this example, the 34 bytes requested would be rounded to an allocation of 40
bytes, or 5 units. The process requesting the allocation is unaware of any rounding to satisfy
unit granularity and proceeds as if the allocation request of 34 bytes was actually 34 bytes.

By using a unit size of 8, the types of allocation made by most applications can be recorded
using one word value with the restriction that the maximum size of a heap block, in units, is
the largest unsigned short or 0xFFFF. This makes the theoretical maximum size of a heap
block in bytes, 0xFFFF * 8, or 524,280 bytes. (This limitation is documented in the Win32
HeapAlloc API documentation.) Does that mean that a program cannot allocate a heap block
greater than 512k? Well, yes and no. A heap block larger than 512k cannot be allocated, but
there is nothing to prevent the Heap API from using VirtualAlloc to allocate a region of linear
memory to satisfy the request. This is exactly what the heap manager does if the size of the

Unit Size

Previous Unit Size

Segment #

Flags

Extra Info #1

Extra Info #2

Heap Block
Memory

Unit Size

Previous Unit Size

Segment #

Flags

Extra Info #1

Extra Info #2

Heap Block
Memory

Unit Size

Previous Unit Size

Segment #

Flags

Extra Info #1

Extra Info #2

Heap Block
Memory
Using SoftICE 197

Exploring Windows NT
requested allocation exceeds the heaps VMThreshold. The value of VMThreshold is stored in
the heap header and by default is 520,192 bytes (or 0xFE000 units). When the heap manager
allocates a large heap block using VirtualAlloc, the resulting structure is referred to as a
Virtually Allocated Block (VAB).

The heap manager walks contiguous heap blocks by converting the current heap block’s unit
size into bytes and adding that to the heap block’s base address. The address of the previous
heap block is calculated in a similar manner, converting the unit size of the previous block to
bytes and subtracting it from the heap block’s base address. The heap manager walks
contiguous heap blocks during coalescing free blocks, sub-allocating a smaller block from a
larger free block, and when validating a heap or heap entry.

Unit sizes are important for free block list management as the array of 128 doubly-linked lists
inside the heap header track free blocks by unit size. Free blocks that have a unit size in the
range from 1 to 127 are stored in the free list at the corresponding array index. Thus, all free
blocks of unit size 32 are stored in Heap->FreeLists[32]. Because it is not possible to have a
heap block that is 0 units, the free list at array index zero stores all heap blocks that are larger
than 127 units; these entries are sorted by size in ascending order. Because a majority of
allocations made by a process are less than 128 units (1024 bytes or 1K), this is a fast way to
find an exact or best fit block to satisfy an allocation. Blocks of 128 units or greater are
allocated much less frequently, so the overhead of doing a linear search of one free list does not
have a large impact on the overall performance of most applications.

The flags field within the heap block header denotes special attributes of the block. One bit is
used to mark a block as allocated versus free. Another is used if it is a VAB. Another is used to
mark the last block within a committed region. The last block within a committed region is
referred to as a sentinel block, and indicates that no more contiguous blocks follow. Using this
flag is much faster than determining if a heap block address is valid by walking the heap
segment’s UCR chain. Another flag is used to mark a block for free or busy-tail checking.
When a process is debugged, the heap manager marks the block in certain ways. Thus, when
an allocated block is released or a free block is reallocated, the heap manager can determine if
the heap block was overwritten in any way.

The extra info fields of the heap block header have different usage depending on whether the
block is allocated or free. In an allocated block, the first field records the number of extra bytes
that were allocated to satisfy granularity or alignment requirements. The second field is a
pseudo-tag. Heap tags and pseudo tags are beyond the scope of this discussion.

For a free block, the extra info fields hold byte and bit-mask values that access a free-list-in-use
bit-field maintained within the heap header. This bit-field provides quicker lookups when a
small block needs to be allocated. Each bit within the bit-field represents one of the 127 small
block free lists, and if the corresponding bit is set, that free list contains one or more free
entries. A zero bit means that a free entry of that size is not available and a larger block will
need to be sub-allocated from. The first extra info field holds the byte index into the bit-field
array. The second extra info field holds the inverted mask of the bit position within the bit-
field. Note that this applies to Windows NT 3.51 only. Newer versions of Windows NT still
use the free list bit-field, but do not store the byte index or bit-mask values.
198 Using SoftICE

Win32 Subsystem
The heap block memory array is also different depending on the allocated state of the free
block. For allocated blocks, this is the actual memory used by your application. For free
blocks, the first two Dwords (1 unit) are used as next and previous pointers that link free
blocks together in a doubly-linked list. If the process that allocated the heap block is being
debugged, an allocated heap block also contains a busy-tail signature at the end of the block.
Free blocks are marked with a special tag that can detect if a stray pointer writes into the heap
memory area, or the process continues to use the block after it was deallocated.

The following diagram shows the basic architecture of an allocated heap block.

In the diagram, the portion labeled Extra Bytes is memory that was needed to satisfy the heap
unit size or heap alignment requirements. This memory area should not be used by the
allocating process, but the heap manager does not directly protect this area from being
overwritten. The busy-tail signature appears just beyond the end of the memory allocated for
use by the process. If an application writes beyond the size of the area requested, this signature
is destroyed and the heap manager signals the debugger with a debug message and an INT 3.
It is possible for a process to write into the extra bytes area without disturbing the busy-tail
signature. In this case, the overwrite is not caught. The Heap API provides an option for
initializing heap memory to zero upon allocation. If this option is not specified when
debugging, the heap manager fills the allocated memory block with a special signature. You
can use this signature to determine if the memory block was properly initialized in your code.

The following diagram shows the basic architecture of a free heap block.

When a block is deallocated and the process is being debugged, the heap manager writes a
special signature into the heap memory area. When the block is allocated at some point in the
future, the heap manager checks that the tag bytes are intact. If any of the bytes was changed,
the heap manger outputs a debug message and executes an INT 3 instruction. This is a good
thing if the debugger you are using traps the INT 3, but most debuggers ignore this debug-
break because it was not set by the debugger. As an aside, having the Free List Node pointers
at the beginning of the memory block is somewhat flawed, because a program that continues
to use a free block is more likely to overwrite data at the beginning of the block than data at
the end. Because these pointers are crucial to navigating the heap, an invalid pointer
eventually causes an exception. When this exception occurs, it can be quite difficult to track
this overwrite back to the original free block.

The following examples show how to use the SoftICE HEAP32 command to aid in
monitoring and debugging Win32 heap issues.

Heap Block
Header

Heap Block
Memory

Busy
Tail

Extra
Bytes

Heap
Blcok Header

Free List
Node

Tagged Heap
Block Memory
Using SoftICE 199

Exploring Windows NT
The following example uses the HEAP32 command to walk all the entries for the heap based
at 0x140000. The -B option of the HEAP32 command causes the base address and size
information to display as the heap manager would view the information. Without the -B
option, the HEAP32 command shows base addresses and sizes as viewed by the application
that allocated the memory. The output is abbreviated for clarity and the two heap blocks that
appear in bold type are used to examine the heap block header in the subsequent example.

To examine the contents of an allocated heap block and a free block, the following example
dumps memory at the base address of the heap block at 0x143FE0. Enough memory is
dumped to show the subsequent block, which is a free block at address 0x144008.

The heap block header fields from the memory dump at address 0x143FE0 are identified with
call-outs. This heap block is 5 units in size (40 bytes) and 0x1C bytes of that size is overhead
for the heap block header (1 unit), busy-tail (1 unit), unit alignment (1 Dword), and an extra
unit left over from a previous allocation.

:HEAP32 -b 140000

Base Type Size Seg# Flags

00140000 HEAP 580 01

00140580 SEGMENT 38 01 TAGGED | BUSYTAIL

001405B8 ALLOC 40 01

. . .

00143FE0 ALLOC 28 01 TAGGED | BUSYTAIL

00144008 FREE FF8 01 FREECHECK | SENTINEL

0010:00143FE0 0005 0006 00 07 1C 00

0010:00143FE8 00000000 00000000 60A25F52

0010:00143FF4 ABABABAB ABABABAB

0010:00143FFC FEEEFEEE 00000000 00000000

Unit size

Previous unit size

Unused bytes Busy tail signature

Heap memory area
Segment number Flags

Extra bytes

Tag
200 Using SoftICE

Win32 Subsystem
The heap block immediately following this is a free block that begins at address 0x144008.
This block is 0x1FF units and the size of the previous block is 5 units. For free blocks 1KB or
larger (80+ units), the Free List byte position and bit-mask values are not used and are zero.
The flag for this heap block indicates that it is a sentinel (bit 4, or 0x10). Immediately
following the heap header is the location where the heap manager has placed a doubly-linked
list node for tracking free blocks. The pointer values for the next and previous fields of the
node are both 0x1400B8. After the free list node, the heap manager tagged all the blocks
memory with a special signature that is validated the next time the block is allocated,
coalesced with another block, or a heap validation is performed.

0010:00144008 01FF 0005 00 14 00 00

0010:00144010 001400B8 001400B8

0010:00144018 FEEEFEEE FEEEFEEE FEEEFEEE FEEEFEEE

0010:00144028 FEEEFEEE FEEEFEEE FEEEFEEE FEEEFEEE

0010:00144038 FEEEFEEE FEEEFEEE FEEEFEEE FEEEFEEE

0010:00144048 FEEEFEEE FEEEFEEE FEEEFEEE FEEEFEEE

Unit size

Previous unit size

Doubly linked free list node

Free check signature

Segment number Flags

Free list byte position

Free list bit mask
Using SoftICE 201

Exploring Windows NT
202 Using SoftICE

No man’s knowledge here can go beyond his experience.

à John Locke
A Error Messages

All break registers used, use in RAM only

You were trying to set a BPX breakpoint in ROM and all the debug registers were already
used. BPX will still work in RAM, because it uses the INT 3 method. You must clear one of
the BPM-style breakpoints before this will work.

Attach to serial device has FAILED

The initial serial handshaking sequence failed. This might happen if the wrong serial port is
selected, the target machine is not running SERIAL.EXE, or the serial cable is faulty.

BPM breakpoint limit exceeded

Only four BPM-style breakpoints are allowed due to restrictions of x86 processors. You must
clear one of the BPM-style breakpoints before this will work.

BPMD address must be on DWord boundary

The address specified in BPMD did not start on a Dword boundary. A Dword boundary
must have the two least significant bits of the address equal 0.

BPMW address must be on Word boundary

The address specified in BPMW did not start on a Word boundary. A Word boundary must
have the least significant bit of the address equal 0.

Breakpoints not allowed within SoftICE

You cannot set breakpoints in SoftICE code.

Cannot interrupt to a less privileged level

You cannot use the GENINT command to go from a lower level to a higher privilege level.
This is a restriction of the x86 processor.

Debug register is already being used

Debug-register specified in BPM command was already used in a previous BPM command.
Using SoftICE 203

Error Messages
Duplicate breakpoint

The specified breakpoint already exists.

Expecting value, not address

The expression evaluator broadly classifies operands as addresses and values. Addresses have a
selector/segment and offset component even if the address is flat. Certain operators such as *
and / expect only plain values, not addresses, and an attempt to use them on addresses
produces this message. In some cases using the indirection operators produces an address;
refer to Operators on page 127 for details.

Expression?? What expression?

The expression evaluator did not find anything to evaluate. Note that in some older versions
of SoftICE the ? command could be used to get help. This is no longer the case; use the H
command (F1).

Int0D fault in SoftICE at address XXXXX offset XXXXX
Fault Code=XXXX

(or the following message)

Int0E Fault in SoftICE at address XXXXX offset XXXXX
Fault Code=XXXX

These two messages are internal SoftICE errors. The code within SoftICE caused either a
general protection fault (0D) or a page fault (0E). The offset is the offset within the code that
caused the fault. Please write down the information contained in the message and e-mail or
call us. These messages also display the values in the registers. Be sure to write down these
values also.

Invalid Debug register

A BPM debug-register greater than 3 was specified. Valid debug registers are DR0, DR1,
DR2, and DR3.

No code at this line number

The line number specified in the command has no code associated with it.

No current source file

You entered the SS command and there was no source file currently on the screen.

No embedded INT 1 or INT 3

The ZAP command did not find an embedded interrupt 1 or interrupt 3 in the code. The
ZAP command only works if the INT 1 or INT 3 instruction is the one before the current
CS:EIP.

No files found

The current symbol table does not have any source files loaded for it.
204 Using SoftICE

Error Messages
No LDT

This message displays when you use certain 16-bit Windows information commands (HEAP,
LHEAP, LDT, and TASK) and the current context is not set to the proper NTVDM process.

No Local Heap

The LHEAP command specified a selector that has no local heap.

No more Watch variables allowed

A maximum of eight watch variables are allowed.

No search in progress

You specified the S command without parameters and no search was in progress. You must
first specify S with an address and a data-list for parameters. To search for subsequent
occurrences of the data-list, use the S command with no parameters.

NO_SIZE

During an A command, the assembler cannot determine whether you wanted to use byte,
word, or double word.

No symbol table

You entered the SYM, SS, or FILE command and there are no symbols currently present.

No TSS

You entered the TSS command while there was no valid task state segment in the system.

Only valid in source mode

You cannot use the SS command in mixed mode or code mode.

Page not present

The specified address was marked not present in the page tables. When SoftICE was trying to
access information, it accessed memory that was in a page marked not present.

Parameter is wrong size

One of the parameters you entered in the command was the wrong size. For example, if you
use the EB or BPMB commands with a word value instead of a byte value.

Pattern not found

The S command did not find a match in its search for the data-list.

Press ‘C’ to continue, and ‘R’ to return to SoftICE

SoftICE popped up due to a fault (06, 0C, 0D, 0E). Press R to return control to SoftICE.
Press C to pass the fault on to the Windows fault handler.
Using SoftICE 205

Error Messages
SoftICE is not active

This message displays on the help line on monochrome and serial displays when SoftICE is no
longer active.

Specified name not found

You typed TABLE with an invalid table-name. Type TABLE with no parameters to see a list of
valid table names.

Symbol not defined (mysymbol)

You referred to a non-existent symbol. Use the SYM command to get a list of symbols for the
current symbol table.
206 Using SoftICE

It is the common wonder of all men, how among so many
millions of faces, there should be none alike.

à Sir Thomas Browne
B Supported
Display Adapters

The following table lists the display adaptors SoftICE supported when the product most
recently shipped. However, NuMega regularly adds new display adaptor support to enhance
SoftICE. You can download the latest support files from the NuMega FTP or BBS sites. Refer
to Solving Display Adapter Problems on page 23 for more information about downloading
support files.

Supported Display Adaptors

Standard Display Adapter (VGA) Actix GraphicsEngine 32I VL Actix GraphicsEngine 32VL Plus

Actix GraphicsEngine 64 Actix GraphicsEngine Ultra 64 Actix GraphicsEngine Ultra Plus

Actix GraphicsEngine Ultra VL
Plus

Actix ProSTAR Actix ProSTAR 64

ATI 8514-Ultra ATI Graphics Pro Turbo ATI Graphics Pro Turbo PCI

ATI Graphics Ultra ATI Graphics Ultra Pro ATI Graphics Ultra Pro EISA

ATI Graphics Ultra Pro PCI ATI Graphics Vantage ATI Graphics Wonder

ATI Graphics Xpression ATI 3d Xpression PCI ATI VGA Wonder

ATI Video Xpression PCI ATI WinTurbo Boca SuperVGA

Boca SuperX Boca Voyager Cardinal VIDEOcolor

Cardinal VIDEOspectrum Chips & Technologies 64310 PCI Chips & Technologies 65545 PCI

Chips & Technologies 65548 PCI Chips & Technologies
Accelerator

Chips & Technologies Super VGA

Cirrus Logic Cirrus Logic 5420 Cirrus Logic 5430 PCI

Cirrus Logic New Cirrus Logic PCI Cirrus Logic RevC

Cirrus Logic 7542 PCI Cirrus Logic 7543 PCI Compaq Qvision 2000
Using SoftICE 207

Supported Display Adapters
DEC PC76H-EA DEC PC76H-EB DEC PC76H-EC

DEC PCXAG-AJ DEC PCXAG-AK DEC PCXAG-AN

DFI WG-1000 DFI WG-1000VL Plus DFI WG-1000VL/4 Plus

DFI WG-3000P DFI WG-5000 DFI WG-6000VL

Diamond Edge 3D 2200XL Diamond Edge 3D 3200XL Diamond Edge 3D 3400XL

Diamond SpeedStar Diamond SpeedStar 24 Diamond SpeedStar 24X

Diamond SpeedStar 64 Diamond SpeedStar Pro Diamond SpeedStar Pro SE

Diamond Stealth 3D 2000 Diamond Stealth 24 Diamond Stealth 32

Diamond Stealth 64 2001 Diamond Stealth 64 (S3 964) Diamond Stealth 64 (S3 968)

Diamond Stealth 64 Video Diamond Stealth Pro Diamond Stealth SE

Diamond Viper OAK Diamond Viper PCI Diamond Viper VLB

Diamond Stealth VRAM ELSA WINNER 1000AVI ELSA WINNER 1000PRO

ELSA WINNER 1000Trio ELSA WINNER 1000 VL ELSA WINNER 1280

ELSA WINNER 2000PRO ELSA WINNER 2000 VL ELSA WINNER/2-1280

Genoa Digital Video Wizard
1000

Genoa Phantom 32I Genoa Phantom 64

Genoa WindowsVGA 24 Turbo Genoa WindowsVGA 64 Turbo Hercules Dynamite

Hercules Dynamite Pro Hercules Graphite 64 Hercules Graphite Terminator 64

Hercules Graphite Terminator
Pro

IBM 8514 IBM ThinkPad 755CX

IBM Think Pad 365XD Matrox MGA Impression Lite Matrox MGA Impression Plus

Matrox MGA Impression Plus
220

Matrox MGA Ultima Plus Matrox MGA Ultima Plus 200

Matrox MGA Millennium Number Nine GXE Number Nine GXE64

Number Nine GXE64 Pro Number Nine 9FX Vision 330 Number Nine 9FX Motion 531

Number Nine 9FX Motion 771 Number Nine FlashPoint 32 Number Nine FlashPoint 64

Number Nine Imagine 128 Number Nine Reality 332 Nvidia NVI Media Controller

Oak Technology 087 Oak Technology Super VGA Orchid Fahrenheit 1280 Plus

Orchid Fahrenheit Pro 64 Orchid Fahrenheit VA Orchid Kelvin 64

Orchid Kelvin EZ Orchid ProDesigner II Paradise Accelerator Ports O'Call

Paradise Accelerator VL Plus Paradise Bahamas Paradise Barbados 64

Paradise Super VGA S3 805 S3 911/924

S3 928 PCI S3 Trio32/64 PCI S3 ViRGE PCI

S3 Vision864/964 PCI S3 Vision868/968 PCI Spider 32 VLB

Spider 32Plus VLB Spider 64 Spider Tarantula 64

Supported Display Adaptors
208 Using SoftICE

Supported Display Adapters
STB Ergo MCX STB Horizon STB Horizon Plus

STB LightSpeed STB MVP-2X STB MVP-4X

STB Nitro STB Pegasus STB PowerGraph Pro

STB PowerGraph VL-24 Trident 9420 PCI Trident Cyber 93XX

Trident Super VGA Tseng Labs Tseng Labs ET4000

Tseng Labs ET4000/W32 Tseng Labs ET6000 Video Logic 928Movie

Video Seven VRAM/VRAM II/
1024i

Western Digital Western Digital (512K)

Weitek Power 9000 Weitek Power 9100

Supported Display Adaptors
Using SoftICE 209

Supported Display Adapters
210 Using SoftICE

Whatever creativity is, it is in part a solution to a problem.

à Brian Aldiss
C Troubleshooting
SoftICE

If you encounter the following problems, try the corresponding solutions. If you encounter
further difficulties, contact the NuMega Technical Support Center.

Problem Solution

The SoftICE screen is black or
unreadable.

Either your display adaptor does not match the display
adaptor set at installation or SoftICE does not support your
display adaptor. Refer to Appendix B: Supported Display
Adapters on page 207.

The PC crashes when you run SoftICE
and you are not using a Pentium or
Pentium-Pro processor.

SoftICE incorrectly determined that your system is using a
Pentium processor. Modify the SoftICE Initialization Settings
to disable Pentium support. Refer to Setting
Troubleshooting Options on page 165.

The PC crashes when you run SoftICE
for Windows 95.

SoftICE does not support the shutdown option RESTART
THE COMPUTER IN MS-DOS MODE?. If you reload
SoftICE after choosing this option, SoftICE eventually
crashes.

Instead, change the statement BootGUI=1 to
BootGUI=0 within the Windows 95 hidden file
MSDOS.SYS. Then, choose SHUT DOWN THE
COMPUTER? to exit to DOS.

You have difficulty establishing a
modem connection.

The modem is returning result codes SoftICE does not
expect. SoftICE looks for the codes OK, COMNECT, and
RING. Place ATXO in the initialization string.
Using SoftICE 211

Troubleshooting SoftICE
The mouse behaves erratically within
SoftICE.

Press Ctrl-M.

Windows NT only: the mouse pointer
behaves erratically in the SoftICE
screen.

Moving the mouse while the SoftICE screen pops up, can
cause Windows NT and the mouse hardware to become out
of synchronization. Switch to a full screen DOS box.

Your keyboard locks or behaves
erratically when you load SoftICE.

Modify the SoftICE Initialization Settings to disable num lock
and caps lock programming. If this does not work and you
are using Windows NT, instruct SoftICE not to patch the
keyboard driver. Refer to Setting Troubleshooting Options
on page 165.

Windows 95 crashes when attempting
to scan for serial ports.

If you placed the SERIAL command in the Initialization
string, SoftICE establishes a connection to the port before
Windows 95 initializes. When Windows 95 initializes, it
might scramble the connection. Disable the port selected in
the Device Manager. The Device Manager is located within
the System Properties in your Control Panel.

Problem Solution
212 Using SoftICE

Glossary

Interrupt Descriptor Table (IDT)

Table pointed to by the IDTR register, which defines the interrupt/exception handlers. Use
the IDT command to display the table.

MAP file

Human-readable file containing debug data, including global symbols and usually line
number information.

MMX

Multimedia extensions to the Intel Pentium and Pentium-Pro processors.

object

Represents any hardware or software resource that needs to be shared as an object. Also, the
term section is sometimes called an object. Refer to section.

one-shot breakpoint

Breakpoint that only goes off once. It is cleared after the first time it goes off or the next time
SoftICE pops up for any reason.

ordinal form

When a symbol table is not relocated, it is said to be in its ordinal form; in this state, the
selectors are section numbers or segment numbers (for 16 bit).

point-and-shoot breakpoint

Breakpoint you set by moving the cursor into the code window using the BPX or HERE
command.

relocate

Adjust program addresses to account for the program’s actual load address.
Using SoftICE 213

Glossary
section

In the PE file format, a chunk of code or data sharing various attributes. Each section has a
name and an ordinal number.

sticky breakpoint

Breakpoint that remains until you remove it. It remains even through unloading and
reloading of your program.

SYM file

File containing debug data, including global symbols and usually line number information.
The SYM file is usually derived from a MAP file.

symbol table

SoftICE-internal representation of the debugging information, for example, symbols and line
numbers associated with a specific module.

virtual breakpoint

Breakpoint that can be set on a symbol or a source line that is not yet loaded in memory.
214 Using SoftICE

Index
SYMBOLS

+ (plus sign) 88, 90

. (dot) command 87

A
A command 87

ADDR command 177, 180

Address
space 191

type 135

Alt-C 83

Alt-D 93

ALTKEY command 71

Alt-L 32, 87

Alt-R 91

Alt-W 89

ANSWER command 149

modem connection 151

ANSWER initialization string 160

Applications
building 48

debugging 45

Arrays
collapsing 32

expanding 32

Assigning expressions 95

AUTOEXEC.BAT 18

AUTOEXEC.ICE 18

B
BC command 40, 124

BD command 40, 124

BE command 124

BH command 124

Bitwise operators 128

BL command 34, 39, 40, 124

BMSG command 107, 112

Borland compiler 48

BPCOUNT function 116

BPE command 39, 124

BPINDEX expression function 119

BPINT command 107, 110

BPIO command 107, 111

BPLOG expression function 118

BPM command 107, 109

BPMD command 40

BPMISS expression function 117

BPT command 124

BPTOTAL expression function 118

BPX
breakpoint 37

command 33, 87, 107, 108

Breakpoint action 108

setting 114

Breakpoint index 123, 124

Breakpoints
BPCOUNT function 116

BPINDEX 119

BPLOG function 118

BPMISS function 117

BPTOTAL function 118

BPX 37

clearing 40

conditional 37, 114

conditional expression 108

context 113

criteria to trigger 113

disabling 40

duplicate 122

elapsed time 122

embedded 124

execution 107, 108

expressions 123

I/O 107, 111

INT 1 and INT 3 124

interrupt 107, 110

manipulating 124

memory 39, 107, 109

one-shot 32

point-and-shoot 32, 33

statistics 123

sticky 33, 107

types 107

using 105

virtual 113

window message 107, 112

BSTAT command 118, 119, 123

Building
applications 48

debug information 28

Built-in functions 132

C
Cable wiring 22

Character constants 130
Using SoftICE 215

Index
Checked build 169

CLASS command 35

Clearing
breakpoints 40

Closing
Code window 83

Data window 93

FPU Stack window 96

Locals window 87

Register window 91

SoftICE windows 73

Watch window 89

Code mode 85

Code window 30, 72, 83

closing 83

disassembled instruction 85

entering commands 86

JUMP 86

modes 85

moving the cursor to 74, 83

NO JUMP 86

opening 83

resizing 83

scrolling 84

strings 86

Collapsing
arrays 32

stacks 88

strings 32

structures 32

typed expressions 90

Command history
recalling 80

Command line arguments
passing 52

Command window 72, 77

associated commands 83

history buffer 82

scrolling 77

Commands

. (dot) 87

A 87

ALTKEY 71

ANSWER 149

BC 40, 124

BD 40, 124

BE 124

BH 124

BL 34, 39, 40, 124

BMSG 107, 112

BPE 39, 124

BPINT 107, 110

BPIO 107, 111

BPM 107

BPMD 40

BPX 33, 87, 107, 108

BSTAT 123

CLASS 35

CR 93

D 93, 95, 96

DATA 93

DEX 95, 96

DIAL 149

E 96

editing 80

entering 75, 77

FILE 30, 87

FORMAT 93, 95

G 33, 39, 91, 93

H 35, 76

HERE 33, 87, 108

HWND 38, 112

IDT 110

informational 34

LINES 73

LOADER32 57, 58

LOCALS 88

MACRO 81

P 31, 91, 93, 165

recalling 80

S 96

SET 78, 83, 87

SRC 31, 87

SS 87

SYM 36

syntax 78

T 93

TABLE 36

TABS 87

TYPES 88

U 31, 33, 87

WATCH 90

WC 83

WD 93

WF 96

WL 87

WR 91

WW 89

X 39

Commands T 91

Compiler options
32-bit 48

Compilers
Borland 48

Delphi 48

MASM 49

Microsoft Visual C++ 49

Symantec C++ 49

Watcom C++ 49

Conditional breakpoints 114

count functions 116

performance 122

setting 37

Conditional expression
breakpoints 108

Connecting
second computer 21

Controlling SoftICE windows 73

Controlling the SoftICE screen 30

Copying data 75

Count functions
conditional expressions 116
216 Using SoftICE

Index
CPU flags 92

CR command 93

Creating
Persistent Macros 162

CSRSS 184

Ctrl-D 71

Cursor
moving among windows 74

Customizing SoftICE 153

Cycling Data windows 93

D
D command 93, 95, 96

Data
copying 75

pasting 75

DATA command 93

Data window 72, 93

assigning expressions 95

associated commands 96

closing 93

cycling through 93

fields 94

format 93

moving the cursor to 74, 93

opening 93

resizing 93

scrolling 94

viewing addresses 93

DBG files 145, 170

Debug information
building 28

Debugging
applications 45

device drivers 46

features 3

generating information 48

preparing to 141

resources 169

Deleting
symbol tables 56

watch 90

Delphi compiler 48

DEVICE command 170

Device drivers
debugging 46

DEX command 95, 96

DIAL command 149

modem connection 150

DIAL initialization string 160

Disable mapping of non-present
pages 165

Disable mouse support 165

Disable Num Lock and Caps Lock
programming 165

Disable Pentium support 165

Disable thread-specific stepping 165

Disabling
breakpoints 40

SoftICE 71

Disassembled instruction
Code window 85

Display adapters
downloading 23

solving problems 23

supported 207

Display command 75

Display diagnostic messages 157

Display options
described 12

one display adapter and monitor 12

second computer 13, 21

secondary monochrome card and
monitor 12

secondary VGA display adapter and
monitor 13

Displaying registers 96

DLL exports 143

loading 32-bit 144

Do not patch keyboard driver 165

Downloading display adapters 23

DRIVER command 170

Duplicate breakpoints 122

E
E command 96

Eaddr function 133

EBP register 121

Editing
commands 80

flags 92

memory 95

registers 92

Effective address 91

Embedded breakpoints 124

Entering commands 75, 77

syntax 78

Entry points 143

unnamed 143

Error messages 203

ESP register 121

Evalue function 134

Execution breakpoints 107, 108

Expanding
arrays 32

stacks 88

strings 32

structures 32

typed expressions 90

Export Information 159

Export names
expressions 144

Exports 155

DLL 143, 144
Using SoftICE 217

Index
Expression evaluator 127

built-in functions 132

character constants 130

expression values 134

forming expressions 130

indirection operators 136

numbers 130

operands 137

operators 127

registers 131

symbols 131

Expression types 134

Expression values
address-type 134

literal-type 134

register-type 134

symbol-type 134

Expressions 127

assigning 95

breakpoints 123

export names 144

forming 130

watching 90

F
Fault trapping 99

Faults
trapping 99

Fields
Data window 94

FILE command 30, 87

Flags 91

editing 92

FORMAT command 93, 95

Formatting
Data window 93

Forming expressions 130

FPU Stack window 72, 96

closing 96

displaying registers 96

moving the cursor to 74

opening 96

Function keys 79, 160

modifying 160

Functions
built-in 132

expression evaluator 132

G
G command 33, 39, 91, 93

GDI objects 186

GDIDEMO application 27, 28

GDT command 175

General settings 155

modifying 155

Global Descriptor Table 173, 175

H
H command 35, 76

Handle values 188

Hardware requirements 11

Heap
API 192

architecture 192

blocks 196

HEAP32 command 185, 195

Help
for SoftICE xiii, 76

for Symbol Loader xiii

Help line 30, 72, 76

HERE command 33, 87, 108

History buffer 82

History buffer size 156

HWND command 38, 112

I
I/O breakpoints 107, 111

IDT command 110, 174

Indirection operators 127, 136

Information
Help line 76

Informational commands 34

Initialization file 155

Initialization settings
Remote Debugging 155

Initialization string 155

Initialization strings
modem 159

Installing SoftICE 9

INT 1 instruction
breakpoints 124

INT 3 instruction
breakpoints 124

Intel architecture 173

Interrupt
breakpoints 107, 110

Descriptor Table 173, 174

J
JUMP string 86

K
Kernel

Windows NT 172

Keyboard Mappings 155

modifying 160

L
LDT command 176

LINES command 73

LOADER32 57, 58

LOADER32.EXE 56

Loading
32-bit DLL exports 144

GDIDEMO 29
218 Using SoftICE

Index
modules 49

SoftICE 27, 46

source 29, 49

symbols 36

Local data
viewing 32

Local Descriptor Table 173, 176

LOCALS command 88

Locals window 32, 72, 87

associated commands 88

closing 87

moving the cursor to 74, 87

opening 87

resizing 87

scrolling 88

Logical operators 128

Lowercase disassembly 157

M
MACRO command 81, 190

Macro Definitions 155

Macro limit 164

Macros
definitions 162

recusion 81, 163

Run-time 81

Manipulating breakpoints 124

MAP32 command 177, 191

MASM compiler 49

Math operators 127

Memory
breakpoints 39, 107, 109

editing 95

map of system memory 177

Messages
error 203

Microsoft Visual C++ compiler 49

Mixed mode 85

MMX registers 96

MOD command 170, 191

Modem 149

ANSWER command 151

connection 149

DIAL command 150

hardware requirements 149

initialization strings 159

SERIAL.EXE 150

Modes
Code 85

Code window 85

Mixed 85

Source 85

Modifying
function keys 160

General settings 155

Keyboard Mappings 160

SoftICE Initialization settings 155

Modules
loading 49

translating 49

Mouse commands
Display 75

Previous 75

Un-Assemble 75

What 75

Moving the cursor 74

N
Navigating

SoftICE 69, 97

Nesting limit 81

NMAKE command 28

NMS file 50

NMSYM.EXE 57

NO JUMP string 86

NonPaged System area 182

NTCALL command 174

NTOSKRNL.EXE 173

Null cable wiring 22

O
OBJDIR command 170

OBJTAB command 177, 189

One-shot breakpoints 32

Opening
Code window 83

Data window 93

FPU Stack window 96

Locals window 87

Register window 91

SoftICE windows 73

Watch window 89

Operand sizes 137

Operators
bitwise 128

expression evaluator 127

indirection 127, 136

logical 128

math 127

precedence 129

special 128

P
P command 31, 34, 91, 93, 165

Packaging source files 54

PAGE command 179

Page Table Entry 181

Paged Pool System area 182

Passing command line arguments
52

Pasting data 75

Persistent Macros 162

PHYS command 179

Point-and-shoot breakpoints 32

Popping up SoftICE 71
Using SoftICE 219

Index
Precedence operators 129

Pre-loading
source 157

symbols 157

Preparing to debug 141

Previous command 75

Process address space 191

Processor Control Region 183

ProtoPTEs 181

PTE 181

Q
QUERY command 185, 191, 192

R
Recalling

command history 80

Register window 72, 91

associated commands 93

closing 91

CPU flags 92

moving the cursor to 74, 91

opening 91

Registers 91, 131

editing 92

Remote Debugging 155, 159

Requirements
hardware and software 11

Reserving
symbol memory 158

Resizing
Code window 83

Data window 93

Locals window 87

SoftICE screen 73

SoftICE windows 73

Watch window 89

Run-time macros 81

S
S command 96

Scrolling
Code window 84

Command window 77

Data window 94

Locals window 88

Watch window 89

windows 74

Serial
cable 22

connection 21, 160

SERIAL command 21

Serial connection 21

SERIAL.EXE 149

modem 150

SET command 78, 83, 87

Setting
breakpoint actions 114

breakpoints 32, 33

conditional breakpoints 37, 114

execution breakpoints 108

I/O breakpoints 111

interrupt breakpoints 110

memory breakpoints 39, 109

point-and-shoot breakpoints 32

source file search path 52

window message breakpoints 112

SoftICE
customizing 153

disabling 71

features 3

implementation 4

informational commands 34

initialization file 155

installing 9

loading 27, 46

modem connection 149

navigating through 69, 97

overview 1

product overview xi, 3

serial connection 21

Startup mode 17, 18

user interface 5, 72

SoftICE Initialization settings
Exports 155

General 155

Keyboard Mappings 155

Macro Definitions 155

modifying 155

Symbols 155

Troubleshooting 155

SoftICE screen 72

controlling 30

popping up 71

resizing 73

SoftICE Tutorial 25

SoftICE windows
closing 73

Code 72, 83

Command 72, 77

controlling 73

Data 72, 93

FPU Stack 72, 96

Locals 72

opening 73

Register 72, 91

resizing 73

Watch 72, 89

Software requirements 11

Sorting symbol tables 56

Source
loading 29, 49

mode 85

packaging 54

pre-loading 157

specifying 55

stepping 31

tracing 31

translating 49
220 Using SoftICE

Index
Special operators 128

Specifying Source Files 55

SRC
command 31, 85, 87

file 55

SS command 87

Stack frame 32, 121

Stacks
collapsing 88

expanding 88

Startup mode 17, 18

Automatic 17

Boot 17

Manual 17

System 17

Stepping
source code 31

Sticky breakpoints 33, 107

Strings
Code window 86

collapsing 32

expanding 32

Structures
collapsing 32

expanding 32

SYM command 36, 182

Symantec C++ compiler 49

Symbol buffer size 158

Symbol Loader 5, 29, 49, 155

command line interface 56

command-line utility 57

Symbol tables
deleting 56

sorting 56

Symbols 131, 155

pre-loading 157

reserving memory 158

tables 36

type 135

System
Code area 177

memory map 177

Tables System area 177

View System area 177

System Page Table Entries 181

T
T command 91, 93

TABLE command 36

Tables 36

TABS command 87

Tail recursion 81

Task State Segment 173, 175

Telephone number 159

THREAD command 192

Time stamp counter 122

Total RAM 156

Trace buffer size 156

Tracing
source code 31

Translating
modules 49

source 49

Trap NMI 157

Triggering
breakpoints 113

Troubleshooting 155

error messages 203

SoftICE 211

Troubleshooting Options 165

TSS command 175

Typed expressions
collapsing 90

expanding 90

TYPES command 88

U
U command 31, 33, 87

Un-Assemble command 75

USER
object creation 190

Object Table 189

objects 186

User-defined
commands 162

settings 155

V
Viewing

addresses 93

local data 32

Virtual breakpoints 113

W
Watch

deleting 90

WATCH command 90

Watch window 72, 89

associated commands 91

closing 89

fields 90

moving the cursor to 74, 89

opening 89

resizing 89

scrolling 89

Watching
expressions 90

Watcom C++ compiler 49

WC command 83

WD command 93

WF command 96

WHAT command 189

What command 75

Win32 subsystem 184
Using SoftICE 221

Index
Window message breakpoints 107,

112

Windows
Code 30, 72, 83

Command 72

components 184

Data 72, 93

FPU Stack 72, 96

Locals 32, 72, 87

moving the cursor among 74

Register 72, 91

scrolling 74

Watch 72, 89

Windows NT
DDK 169

exploring 167

kernel 172

references 171

system memory map 177

Wiring Serial cable 22

WL command 87

WR command 91

WW command 89

X
X command 39
222 Using SoftICE

	Preface
	Purpose of This Manual
	Audience
	Organization of This Manual
	Typographical Conventions
	How to Use This Manual
	Other Useful Documentation

	1 Welcome to SoftICE
	Product Overview
	About SoftICE
	About Symbol Loader

	Customer Assistance
	For Non-technical Issues
	For Technical Issues

	2 Installing SoftICE
	Introduction
	Hardware and Software Requirements
	SoftICE Display Options

	Pre-installation
	Installation
	Post-installation
	Configuring BOOT.INI to Support a Single CPU on a Multiprocessor System
	Configuring SoftICE Loading for Windows 95
	Connecting a Second Computer Through a Serial Port

	Solving Display Adapter Problems

	3 SoftICE Tutorial
	Introduction
	Loading SoftICE
	Building the GDIDEMO Sample Application
	Loading the GDIDEMO Sample Application
	Controlling the SoftICE Screen
	Tracing and Stepping through Source Code
	Viewing Local Data
	Setting Point-and-Shoot Breakpoints
	Setting a One-Shot Breakpoint
	Setting a Sticky Breakpoint

	Using SoftICE Informational Commands
	Using Symbols and Symbol Tables
	Setting a Conditional Breakpoint
	Setting a BPX Breakpoint
	Editing a Breakpoint

	Setting a Read-Write Memory Breakpoint

	4 Loading Code into SoftICE
	Debugging Concepts
	Preparing to Debug Applications
	Preparing to Debug Device Drivers and VxDs

	Loading SoftICE Manually
	Loading SoftICE for Windows 95
	Loading SoftICE for Windows NT

	Building Applications with Debug Information
	Using Symbol Loader to Translate and Load Files
	Modifying Module Settings
	Modifying General Settings
	Modifying Translation Settings
	Modifying Debugging Settings

	Specifying Program Source Files
	Deleting Symbol Tables
	Using Symbol Loader From a DOS Prompt
	Using the Symbol Loader Command-Line Utility
	NMSYM Command Syntax
	Using NMSYM to Translate Symbol Information
	Using NMSYM to Load a Module and Symbol Information
	Using NMSYM to Load Symbol Tables or Exports
	Using NMSYM to Unload Symbol Information
	Using NMSYM to Save History Logs
	Getting information about NMSYM

	5 Navigating Through SoftICE
	Introduction
	Popping Up the SoftICE Screen
	Disabling SoftICE at Startup
	Using the SoftICE Screen
	Resizing the SoftICE Screen
	Controlling SoftICE Windows
	Copying and Pasting Data
	Entering Commands From the Mouse
	Obtaining Help

	Using the Command Window
	Scrolling the Command Window
	Entering Commands
	Recalling Commands
	Using Run-Time Macros
	Saving the Command Window History Buffer to a File
	Associated Commands

	Using the Code Window
	Controlling the Code Window
	Viewing Information
	Entering Commands From the Code Window

	Using the Locals Window
	Controlling the Locals Window
	Expanding and Collapsing Stacks
	Associated Commands

	Using the Watch Window
	Controlling the Watch Window
	Setting an Expression to Watch
	Viewing Information
	Expanding and Collapsing Typed Expressions
	Associated Commands

	Using the Register Window
	Controlling the Register window
	Viewing Information
	Editing Registers and Flags
	Associated Commands

	Using the Data Window
	Controlling the Data Window
	Viewing Information
	Changing the Memory Address and Format
	Editing Memory
	Assigning Expressions
	Associated Commands

	Using the FPU Stack Window
	Viewing Information

	6 Using SoftICE
	Debugging Multiple Programs at Once
	Trapping Faults
	Ring 3 32-bit protected mode (Win32 programs)
	Ring 0 driver code (Kernel-mode device drivers)
	Ring 3 16-bit protected mode (16-bit Windows programs)

	About Address Contexts
	Using INT 0x41 .DOT Commands
	Understanding Transitions From Ring-3 to Ring-0

	7 Using Breakpoints
	Introduction
	Types of Breakpoints Supported by SoftICE
	Breakpoint Options
	Execution Breakpoints
	Memory Breakpoints
	Interrupt Breakpoints
	I/O Breakpoints
	Window Message Breakpoints

	Understanding Breakpoint Contexts
	Virtual Breakpoints
	Setting a Breakpoint Action
	Conditional Breakpoints
	Conditional Breakpoint Count Functions
	Using Local Variables in Conditional Expressions
	Referencing the Stack in Conditional Breakpoints
	Performance
	Duplicate Breakpoints

	Elapsed Time
	Breakpoint Statistics
	Referring to Breakpoints in Expressions
	Manipulating Breakpoints
	Using Embedded Breakpoints

	8 Using Expressions
	Expressions
	Operators
	Operator Precedence
	Forming Expressions
	Expression Types
	Type Casting
	Evaluating Symbols
	Using Indirection With Symbols

	9 Loading Symbols for System Components
	Loading Export Symbols for DLLs and EXEs
	Using Unnamed Entry Points
	Using Export Names in Expressions
	Loading 32-bit DLL Exports Dynamically

	Using Windows NT Symbol (DBG) Files with SoftICE
	Using Windows 95 Symbol (.SYM) Files with SoftICE

	10 Using SoftICE with a Modem
	Introduction
	Hardware Requirements
	Establishing a Connection
	Using SERIAL.EXE by Modem
	DIAL Command
	ANSWER Command

	11 Customizing SoftICE
	Modifying SoftICE Initialization Settings
	Modifying General Settings
	Pre-loading Symbols and Source Code
	Pre-loading Exports
	Configuring Remote Debugging
	Modifying Keyboard Mappings
	Working with Persistent Macros
	Setting Troubleshooting Options

	12 Exploring Windows NT
	Overview
	Resources for Advanced Debugging

	Inside the Windows NT Kernel
	Managing the Intel Architecture
	Windows NT System Memory Map

	Win32 Subsystem
	Inside CSRSS
	USER and GDI Objects
	Process Address Space
	Heap API

	A Error Messages
	B Supported Display Adapters
	C Troubleshooting SoftICE
	Glossary
	Index

